Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Curr Opin Infect Dis ; 32(3): 210-216, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30950853

RESUMEN

PURPOSE OF REVIEW: This review highlights recent developments in the development of monoclonal antibodies to treat bacterial disease, including preclinical advances and the status of current clinical trials. RECENT FINDINGS: Monoclonal antibody (mAb) therapy is becoming increasingly promising in the infectious disease field. Though bacterial exotoxins continue to be a mainstay of mAb targets, searches for protein targets on the surface of bacteria have uncovered new mechanisms of antibody-mediated action against bacteria. Additionally, surveys of the polysaccharide serotype prevalence among antibiotic-resistant bacterial populations have yielded opportunities to leverage human selective pressures to our clinical advantage. Several mAb candidates are progressing through clinical development with great promise, especially those with structures altered to provide maximum benefit. Although other clinical trials have recently proved unsuccessful, these failures and lessons from immune profiling provide opportunities to understand how vulnerabilities of certain targets may change in different disease states. SUMMARY: Despite the hurdles of identifying effective targets and understanding how mAbs provide protection within different infections, we show that the progress made in these fields is a positive indication of mAbs becoming more widely accepted as the future for treating bacterial infections.


Asunto(s)
Anticuerpos Antibacterianos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Infecciones Bacterianas/terapia , Inmunoterapia/métodos , Animales , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Inmunoterapia/tendencias
2.
Blood ; 127(9): 1085-96, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26647393

RESUMEN

Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMß2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways.


Asunto(s)
Endocitosis , Fibrina/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Animales , Bioensayo , Receptor 1 de Quimiocinas CX3C , Proliferación Celular , Fibrinolisina/metabolismo , Ratones , Células Mieloides/metabolismo , Plasminógeno/metabolismo , Activadores Plasminogénicos/metabolismo , Proteolisis , Receptores de Quimiocina/metabolismo , Receptores de Péptidos/metabolismo
3.
Microbiol Spectr ; 10(4): e0176022, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862974

RESUMEN

The most pressing challenge for the development of anti-capsular antibodies is maximizing coverage against the heterogenous capsular polysaccharide (CPS) of carbapenem-resistant Klebsiella pneumoniae (CR-Kp). So far, only CR-Kp with wzi154 CPS has been successfully targeted by antibodies. Here, we present murine antibody 24D11, which was developed by vaccinating mice with purified wzi50-type CPS. Cross-reactivity and protective efficacy of MAb 24D11 were confirmed against CR-Kp that express the 3 most prevalent CPS types (wzi29, wzi154, wzi50) using both in vitro and in vivo infection models. 24D11 induced complement-mediated and independent opsonophagocytosis in macrophages as well as killing of all CR-Kp strains in whole blood cells derived from healthy donors. In a murine intratracheal infection model, 24D11 reduced lung burden and dissemination of CR-Kp strains when administered 4 h pre- or postinfection. The protective efficacy of 24D11 remained effective in neutropenic mice. This is the first antibody which exhibits cross-protective efficacy against clade 1 and 2 ST258 CR-Kp strains. It overcomes a major barrier to successfully target wzi29, a major CPS expressed by ST258 CR-Kp. The finding that 24D11 also exhibits potent protective efficacy against wzi154 CR-Kp strains highlights its high potential as a lead agent for the development of broadly active immunotherapy. IMPORTANCE Here, we present in vitro and in vivo data for the wzi50 CPS-specific monoclonal antibody MAb 24D11, demonstrating its cross-protective efficacy against three prominent win types (wzi29, wzi154, and wzi50) of the carbapenem-resistant clonal group CG258. In a murine pulmonary infection model, MAb 24D11 reduced bacterial lung burden and dissemination to other organs even if administered 4 h postinfection. Its protective efficacy was also observed in neutropenic mice, which highlights its potential value in clinical settings where oncology patients with CG258 infections may also be neutropenic.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/prevención & control , Macrófagos , Ratones
4.
mSphere ; 6(2)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658281

RESUMEN

Capsular polysaccharide (CPS) heterogeneity within carbapenem-resistant Klebsiella pneumoniae (CR-Kp) strain sequence type 258 (ST258) must be considered when developing CPS-based vaccines. Here, we sought to characterize CPS-specific antibody responses elicited by CR-Kp-infected patients. Plasma and bacterial isolates were collected from 33 hospital patients with positive CR-Kp cultures. Isolate capsules were typed by wzi sequencing. Reactivity and measures of efficacy of patient antibodies were studied against 3 prevalent CR-Kp CPS types (wzi29, wzi154, and wzi50). High IgG titers against wzi154 and wzi50 CPS were documented in 79% of infected patients. Patient-derived (PD) IgGs agglutinated CR-Kp and limited growth better than naive IgG and promoted phagocytosis of strains across the serotype isolated from their donors. Additionally, poly-IgG from wzi50 and wzi154 patients promoted phagocytosis of nonconcordant CR-Kp serotypes. Such effects were lost when poly-IgG was depleted of CPS-specific IgG. Additionally, mice infected with wzi50, wzi154, and wzi29 CR-Kp strains preopsonized with wzi50 patient-derived IgG exhibited lower lung CFU than controls. Depletion of wzi50 antibodies (Abs) reversed this effect in wzi50 and wzi154 infections, whereas wzi154 Ab depletion reduced poly-IgG efficacy against wzi29 CR-Kp We are the first to report cross-reactive properties of CPS-specific Abs from CR-Kp patients through both in vitro and in vivo models.IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is a rapidly emerging public health threat that can cause fatal infections in up to 50% of affected patients. Due to its resistance to nearly all antimicrobials, development of alternate therapies like antibodies and vaccines is urgently needed. Capsular polysaccharides constitute important targets, as they are crucial for Klebsiella pneumoniae pathogenesis. Capsular polysaccharides are very diverse and, therefore, studying the host's capsule-type specific antibodies is crucial to develop effective anti-CPS immunotherapies. In this study, we are the first to characterize humoral responses in infected patients against carbapenem-resistant Klebsiella pneumoniae expressing different wzi capsule types. This study is the first to report the efficacy of cross-reactive properties of CPS-specific Abs in both in vitro and in vivo models.


Asunto(s)
Antibacterianos/farmacología , Anticuerpos Antibacterianos/sangre , Enterobacteriaceae Resistentes a los Carbapenémicos/inmunología , Carbapenémicos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/inmunología , Femenino , Genotipo , Humanos , Klebsiella pneumoniae/genética , Masculino , Persona de Mediana Edad , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/inmunología , Serogrupo , Virulencia , Adulto Joven
5.
mBio ; 11(5)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32900809

RESUMEN

Monoclonal antibodies (MAbs) have the potential to assist in the battle against multidrug-resistant bacteria such as carbapenem-resistant Klebsiella pneumoniae (CR-Kp). However, the characteristics by which these antibodies (Abs) function, such as the role of antibody subclass, must be determined before such modalities can be carried from the bench to the bedside. We performed a subclass switch on anticapsular monoclonal murine IgG3 (mIgG3) hybridomas and identified and purified a murine IgG1 (mIgG1) hybridoma line through sib selection. We then compared the ability of the mIgG1 and mIgG3 antibodies to control CR-Kp sequence type 258 (ST258) infection both in vitro and in vivo We found by enzyme-limited immunosorbent assay (ELISA) and flow cytometry that mIgG3 has superior binding to the CR-Kp capsular polysaccharide (CPS) and superior agglutinating ability compared to mIgG1 The mIgG3 also, predictably, had better complement-mediated serum bactericidal activity than the mIgG1 and also promoted neutrophil-mediated killing at concentrations lower than that of the mIgG1 In contrast, the mIgG1 had marginally better activity in improving macrophage-mediated phagocytosis. Comparing their activities in a pulmonary infection model with wild-type as well as neutropenic mice, both antibodies reduced organ burden in a nonlethal challenge, regardless of neutrophil status, with mIgG1 having the highest overall burden reduction in both scenarios. However, at a lethal inoculum, both antibodies showed reduced efficacy in neutropenic mice, with mIgG3 retaining the most activity. These findings suggest the viability of monoclonal Ab adjunctive therapy in neutropenic patients that cannot mount their own immune response, while also providing some insight into the relative contributions of immune mediators in CR-Kp protection.IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is an urgent public health threat that causes life-threatening infections in immunocompromised hosts. Its resistance to nearly all antibiotics necessitates novel strategies to treat it, including the use of monoclonal antibodies. Monoclonal antibodies are emerging as important adjuncts to traditional pharmaceuticals, and studying how they protect against specific bacteria such as Klebsiella pneumoniae is crucial to their development as effective therapies. Antibody subclass is often overlooked but is a major factor in how an antibody interacts with other mediators of immunity. This paper is the first to examine how the subclass of anticapsular monoclonal antibodies can affect efficacy against CR-Kp Additionally, this work sheds light on the viability of monoclonal antibody therapy in neutropenic patients, who are most vulnerable to CR-Kp infection.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Enterobacteriaceae Resistentes a los Carbapenémicos/inmunología , Inmunoglobulina G/clasificación , Inmunoglobulina G/inmunología , Klebsiella pneumoniae/inmunología , Infecciones del Sistema Respiratorio/prevención & control , Animales , Antibacterianos/farmacología , Anticuerpos Antibacterianos/clasificación , Anticuerpos Monoclonales/clasificación , Anticuerpos Monoclonales/genética , Sitios de Unión de Anticuerpos , Carbapenémicos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Neutropenia , Fagocitosis , Infecciones del Sistema Respiratorio/inmunología
6.
Crit Care Explor ; 2(6): e0154, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32696013

RESUMEN

OBJECTIVE: As the severe acute respiratory syndrome-coronavirus-2 pandemic develops, assays to detect the virus and infection caused by it are needed for diagnosis and management. To describe to clinicians how each assay is performed, what each assay detects, and the benefits and limitations of each assay. DATA SOURCES: Published literature and internet. STUDY SELECTION: As well done, relevant and recent as possible. DATA EXTRACTION: Sources were read to extract data from them. DATA SYNTHESIS: Was synthesized by all coauthors. CONCLUSIONS: Available assays test for current or previous severe acute respiratory syndrome-coronavirus-2 infection. Nucleic acid assays such as quantitative, or real-time, polymerase chain reaction and loop-mediated isothermal amplification are ideal for acute diagnosis with polymerase chain reaction testing remaining the "gold standard" to diagnose acute infection by severe acute respiratory syndrome-coronavirus-2, specifically the presence of viral RNA. Assays that detect serum antibodies can theoretically diagnose both acute and remote infection but require time for the patient to develop immunity and may detect nonspecific antibodies. Antibody assays that quantitatively measure neutralizing antibodies are needed to test efficacy of convalescent plasma therapy but are more specialized.

7.
mBio ; 9(2)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615497

RESUMEN

Carbapenem-resistant (CR) sequence type 258 (ST258) Klebsiella pneumoniae has become an urgent health care threat, causing an increasing number of high-mortality infections. Its resistance to numerous antibiotics and threat to immunocompromised patients necessitate finding new therapies to combat these infections. Previous successes in the laboratory, as well as the conservation of capsular polysaccharide (CPS) among the members of the ST258 clone, suggest that monoclonal antibody (MAb) therapy targeting the outer polysaccharide capsule of K. pneumoniae could serve as a valuable treatment alternative for afflicted patients. Here, we isolated several IgG antibodies from mice inoculated with a mixture of CR K. pneumoniae CPS conjugated to anthrax protective antigen. Two of these MAbs, 17H12 and 8F12, bind whole and oligosaccharide epitopes of the CPS of clade 2 ST258 CR K. pneumoniae, which is responsible for the most virulent CR K. pneumoniae infections in the United States. These antibodies were shown to agglutinate all clade 2 strains and were also shown to promote extracellular processes killing these bacteria, including biofilm inhibition, complement deposition, and deployment of neutrophil extracellular traps. Additionally, they promoted opsonophagocytosis and intracellular killing of CR K. pneumoniae by human-derived neutrophils and cultured murine macrophages. Finally, when mice were intratracheally infected with preopsonized clade 2 CR K. pneumoniae, these MAbs reduced bacterial dissemination to organs. Our data suggest that broadly reactive anticapsular antibodies and vaccines against clade 2 ST258 CR K. pneumoniae are possible. Such MAbs and vaccines would benefit those susceptible populations at risk of infection with this group of multidrug-resistant bacteria.IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is an enteric bacterium that has been responsible for an increasing number of deadly outbreaks and hospital-acquired infections. The pathogen's resistance to numerous antibiotics, including new drugs, leaves few therapeutic options available for infected patients, who often are too sick to fight the infection themselves. Immunotherapy utilizing monoclonal antibodies has been successful in other medical fields, and antibodies targeting the outer polysaccharide capsule of these bacteria could be a valuable treatment alternative. This study presents two anticapsular antibodies, 17H12 and 8F12, that were found to be protective against the most virulent carbapenem-resistant K. pneumoniae clinical strains. These antibodies are shown to promote the killing of these strains through several extracellular and intracellular processes and prevent the spread of infection in mice from the lungs to distal organs. Thus, they could ultimately treat or protect patients infected or at risk of infection by this multidrug-resistant bacterium.


Asunto(s)
Anticuerpos Antibacterianos/administración & dosificación , Infecciones por Klebsiella/terapia , Klebsiella pneumoniae/inmunología , Polisacáridos Bacterianos/inmunología , Pruebas de Aglutinación , Estructuras Animales/microbiología , Animales , Anticuerpos Antibacterianos/aislamiento & purificación , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/aislamiento & purificación , Enterobacteriaceae Resistentes a los Carbapenémicos/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/aislamiento & purificación , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Neutrófilos/inmunología , Neutrófilos/microbiología , Fagocitosis , Resultado del Tratamiento
8.
mSphere ; 2(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28989972

RESUMEN

With the problem of multidrug-resistant Gram-negative pathogens becoming increasingly dire, new strategies are needed to protect and treat infected patients. Though abandoned in the past, monoclonal antibody therapy against Gram-negative bacteria remains a potential solution and has potential advantages over the broad-spectrum antibiotics they were once replaced by. This Perspective reviews the prospect of utilizing monoclonal antibody therapy against these pathogens, as well as the challenges of doing so and the current therapy targets under investigation.

9.
PLoS One ; 8(1): e53880, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326524

RESUMEN

Chromatin is separated into functional domains distinguished by combinatorial patterns of post-translational histone modifications and DNA methylation. Recent studies examining multiple histone modifications have found numerous chromatin states with distinct profiles of chromatin marks and functional enrichments. There are data showing coordinate regulation between DNAme and H3K27me3, which are both involved in the establishment and maintenance of epigenetic gene silencing, but the data are conflicting. Multiple studies have presented evidence to support the theory that PRC2 and DNAme cooperate to achieve silencing, or alternatively that H3K27me3 and DNAme act antagonistically. Here we examine the effect loss of either PRC2 or DNA methyltransferase activity has on the placement of the reciprocal mark in mouse ES cells. We find that DNAme is acting globally to antagonize the placement of H3K27me3, in accordance with recently published results. At least 471,011 domains in the mouse genome acquire H3K27me3 when DNAme is diminished. Of these 466,563 have been shown to be fully methylated in wildtype ES cells, indicating the effects of DNAme on H3K27me3 are direct. In a reciprocal experiment, we examine the effect loss of PRC2 has on the placement of DNAme. In contrast to the global antagonism DNAme has on the placement of H3K27me3, loss of H3K27me3 has a modest effect on DNAme, with only 4% of genes undergoing changes in DNAme, including 861 showing increases and 552 showing losses of overall DNAme. We anticipate that integrating genomic datasets where the effect of loss of a particular epigenetic mark has on the placement of other marks will help elucidate the rules governing epigenetic regulation and what role coordinate regulation of epigenetic marks plays in development and disease.


Asunto(s)
Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Epigénesis Genética , Histona Demetilasas con Dominio de Jumonji/genética , Animales , Línea Celular , Cromatina/genética , Células Madre Embrionarias , Silenciador del Gen , Genoma , Histonas/genética , Histonas/metabolismo , Ratones , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA