Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Fungi (Basel) ; 10(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38786677

RESUMEN

Coccidiomycosis is a potentially life-threatening fungal infection endemic to certain regions of Argentina. The infection is caused by Coccidioides spp. and is primarily diagnosed by Coccidioides antibody (Ab) detection. Access to rapid, highly accurate diagnostic testing is critical to ensure prompt antifungal therapy. The sona Coccidioides Ab Lateral Flow Assay (LFA) performs faster and requires less laboratory infrastructure and equipment compared with other Ab detection assays, potentially providing a substantial improvement for rapid case screening in coccidioidomycosis-endemic regions; however, validation of this test is needed. Thus, we aimed to evaluate the analytical performance of the sona Coccidioides Ab (LFA) and compare agreement with anti-Coccidioides Ab detection assays. A total of 103 human sera specimens were tested, including 25 specimens from patients with coccidioidomycosis and 78 from patients without coccidioidomycosis. The sona Coccidioides Ab Lateral Flow Assay (LFA) was performed with a sensitivity of 88%, and specificity and accuracy of 87%. Furthermore, the Coccidioides Ab LFA had good agreement with other anti-Coccidioides Ab detection assays. Our findings suggest the sona Coccidioides Ab LFA has satisfactory performance and may be useful for diagnosing coccidioidomycosis in endemic regions.

2.
Cell Oncol (Dordr) ; 38(4): 289-305, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26044847

RESUMEN

PURPOSE: Breast cancer is the leading cause of death among women worldwide. The exact role of luminal epithelial (LEP) and myoephitelial (MEP) cells in breast cancer development is as yet unclear, as also how retinoids may affect their behaviour. Here, we set out to evaluate whether retinoids may differentially regulate cell type-specific processes associated with breast cancer development using the bi-cellular LM38-LP murine mammary adenocarcinoma cell line as a model. MATERIALS AND METHODS: The bi-cellular LM38-LP murine mammary cell line was used as a model throughout all experiments. LEP and MEP subpopulations were separated using inmunobeads, and the expression of genes known to be involved in epithelial to mysenchymal transition (EMT) was assessed by qPCR after all-trans retinoic acid (ATRA) treatment. In vitro invasive capacities of LM38-LP cells were evaluated using 3D Matrigel cultures in conjunction with confocal microscopy. Also, in vitro proliferation, senescence and apoptosis characteristics were evaluated in the LEP and MEP subpopulations after ATRA treatment, as well as the effects of ATRA treatment on the clonogenic, adhesive and invasive capacities of these cells. Mammosphere assays were performed to detect stem cell subpopulations. Finally, the orthotopic growth and metastatic abilities of LM38-LP monolayer and mammosphere-derived cells were evaluated in vivo. RESULTS: We found that ATRA treatment modulates a set of genes related to EMT, resulting in distinct gene expression signatures for the LEP or MEP subpopulations. We found that the MEP subpopulation responds to ATRA by increasing its adhesion to extracellular matrix (ECM) components and by reducing its invasive capacity. We also found that ATRA induces apoptosis in LEP cells, whereas the MEP compartment responded with senescence. In addition, we found that ATRA treatment results in smaller and more organized LM38-LP colonies in Matrigel. Finally, we identified a third subpopulation within the LM38-LP cell line with stem/progenitor cell characteristics, exhibiting a partial resistance to ATRA. CONCLUSIONS: Our results show that the luminal epithelial (LEP) and myoephitelial (MEP) mammary LM38-P subpopulations respond differently to ATRA, i.e., the LEP subpopulation responds with increased cell cycle arrest and apoptosis and the MEP subpopulation responds with increased senescence and adhesion, thereby decreasing its invasive capacity. Finally, we identified a third subpopulation with stem/progenitor cell characteristics within the LM38-LP mammary adenocarcinoma cell line, which appears to be non-responsive to ATRA.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Neoplasias Mamarias Animales/tratamiento farmacológico , Tretinoina/farmacología , Carga Tumoral/efectos de los fármacos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/metabolismo , Ratones Endogámicos BALB C , Microscopía Fluorescente , Modelos Biológicos , Receptores de Ácido Retinoico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA