Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 291(23): 12245-53, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27129255

RESUMEN

Protein homeostasis is maintained by quality control mechanisms that detect and eliminate deficient translation products. Cytosolic defective proteins can arise from translation of aberrant mRNAs lacking a termination codon (NonStop) or containing a sequence that blocks translation elongation (No-Go), which results in translational arrest. Stalled ribosomes are dissociated, aberrant mRNAs are degraded by the cytoplasmic exosome, and the nascent peptides remaining in stalled 60S exit tunnels are detected by the ribosome-bound quality control complex (RQC) composed of Ltn1, Rqc1, Rqc2, and Cdc48. Whereas Ltn1 polyubiquitylates these nascent peptides, Rqc2 directs the addition of C-terminal alanine-threonine tails (CAT-tails), and a Cdc48 hexamer is recruited to extract the nascent peptides, which are addressed to the proteasome for degradation. Although the functions of most RQC components have been described, the role of Rqc1 in this quality control process remains undetermined. In this article we show that the absence of Rqc1 or Ltn1 results in the aggregation of aberrant proteins, a phenomenon that requires CAT-tail addition to the nascent peptides by Rqc2. Our results suggest that aberrant CAT-tailed protein aggregation results from a defect in Cdc48 recruitment to stalled 60S particles, a process that requires both Rqc1 and Ltn1. These protein aggregates contain Ltn1-dependent polyubiquitin chains and are degraded by the proteasome. Finally, aggregate characterization by proteomics revealed that they contain specific chaperones including Sis1, Sgt2, Ssa1/2, and Hsp82, suggesting that these protein aggregates may be addressed to aggresome-like structures when the RQC complex fails to deliver aberrant nascent peptides to the proteasome for degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Alanina/química , Alanina/genética , Alanina/metabolismo , Western Blotting , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Microscopía Fluorescente , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Biosíntesis de Proteínas/genética , Proteolisis , Proteómica/métodos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Treonina/química , Treonina/genética , Treonina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteína que Contiene Valosina
2.
Proc Natl Acad Sci U S A ; 110(13): 5046-51, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479637

RESUMEN

Ribosome stalling on eukaryotic mRNAs triggers cotranslational RNA and protein degradation through conserved mechanisms. For example, mRNAs lacking a stop codon are degraded by the exosome in association with its cofactor, the SKI complex, whereas the corresponding aberrant nascent polypeptides are ubiquitinated by the E3 ligases Ltn1 and Not4 and become proteasome substrates. How translation arrest is linked with polypeptide degradation is still unclear. Genetic screens with SKI and LTN1 mutants allowed us to identify translation-associated element 2 (Tae2) and ribosome quality control 1 (Rqc1), two factors that we found associated, together with Ltn1 and the AAA-ATPase Cdc48, to 60S ribosomal subunits. Translation-associated element 2 (Tae2), Rqc1, and Cdc48 were all required for degradation of polypeptides synthesized from Non-Stop mRNAs (Non-Stop protein decay; NSPD). Both Ltn1 and Rqc1 were essential for the recruitment of Cdc48 to 60S particles. Polysome gradient analyses of mutant strains revealed unique intermediates of this pathway, showing that the polyubiquitination of Non-Stop peptides is a progressive process. We propose that ubiquitination of the nascent peptide starts on the 80S and continues on the 60S, on which Cdc48 is recruited to escort the substrate for proteasomal degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Biosíntesis de Proteínas/fisiología , Proteolisis , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinación/fisiología , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN , Proteínas Represoras , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina
3.
RNA ; 17(10): 1788-94, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21862638

RESUMEN

Production of messenger ribonucleoprotein particles (mRNPs) is subjected to quality control (QC). In Saccharomyces cerevisiae, the RNA exosome and its cofactors are part of the nuclear QC machinery that removes, or stalls, aberrant molecules, thereby ensuring that only correctly formed mRNPs are exported to the cytoplasm. The Ccr4-Not complex, which constitutes the major S. cerevisiae cytoplasmic deadenylase, has recently been implied in nuclear exosome-related processes. Consistent with a possible nuclear function of the complex, the deletion or mutation of Ccr4-Not factors also elicits transcription phenotypes. Here we use genetic depletion of the Mft1p protein of the THO transcription/mRNP packaging complex as a model system to link the Ccr4-Not complex to nuclear mRNP QC. We reveal strong genetic interactions between alleles of the Ccr4-Not complex with both the exosomal RRP6 and MFT1 genes. Moreover, Rrp6p-dependent in vivo QC phenotypes of Δmft1 cells can be rescued by codeletion of several Ccr4-Not components. We discuss how the Ccr4-Not complex may connect with the mRNP QC pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Genes Fúngicos/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Ciclo Celular/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Represoras/genética , Ribonucleasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética
4.
RNA ; 14(11): 2305-13, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18824516

RESUMEN

Production of aberrant messenger ribonucleoprotein particles (mRNPs) is subject to quality control (QC). In yeast strains carrying mutations of the THO complex, transcription induction triggers a number of interconnected QC phenotypes: (1) rapid degradation of several mRNAs; (2) retention of a fraction of THO-dependent mRNAs in transcription site-associated foci; and (3) formation of a high molecular weight DNA/protein complex in the 3'-ends of THO target genes. Here, we demonstrate that the 3'-5' exonucleolytic domain of the nuclear exosome factor Rrp6p is necessary for establishing all QC phenotypes associated with THO mutations. The N terminus of Rrp6p is also important presumably through its binding to the Rrp6p co-factor Rrp47p. Interestingly, the 3'-5' exonucleolytic activity of Dis3p, the only other active exonuclease of the nuclear exosome, can also contribute to RNA QC in THO mutants, while other nuclear 3'-5' exonucleases cannot. Our data show that exonucleolytic attack by the nuclear exosome is needed both for provoking mRNP QC and for its ensuing elimination of faulty RNA.


Asunto(s)
Exorribonucleasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Unión al ADN , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína/genética , ARN de Hongos/genética , ARN Mensajero/genética , Proteínas de Unión al ARN , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
5.
Mol Biol Cell ; 28(9): 1165-1176, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28298488

RESUMEN

Protein quality control mechanisms eliminate defective polypeptides to ensure proteostasis and to avoid the toxicity of protein aggregates. In eukaryotes, the ribosome-bound quality control (RQC) complex detects aberrant nascent peptides that remain stalled in 60S ribosomal particles due to a dysfunction in translation termination. The RQC complex polyubiquitylates aberrant polypeptides and recruits a Cdc48 hexamer to extract them from 60S particles in order to escort them to the proteasome for degradation. Whereas the steps from stalled 60S recognition to aberrant peptide polyubiquitylation by the RQC complex have been described, the mechanism leading to proteasomal degradation of these defective translation products remains unknown. We show here that the RQC complex also exists as a ribosome-unbound complex during the escort of aberrant peptides to the proteasome. In addition, we identify a new partner of this light version of the RQC complex, the E3 ubiquitin ligase Tom1. Tom1 interacts with aberrant nascent peptides and is essential to limit their accumulation and aggregation in the absence of Rqc1; however, its E3 ubiquitin ligase activity is not required. Taken together, these results reveal new roles for Tom1 in protein quality control, aggregate prevention, and, therefore, proteostasis maintenance.


Asunto(s)
Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Proteínas de Ciclo Celular/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Biosíntesis de Proteínas , Proteolisis , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/fisiología , Saccharomyces cerevisiae/metabolismo , Ubiquitinación
6.
Nucleic Acids Res ; 31(16): 4899-909, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12907733

RESUMEN

The Saccharomyces cerevisiae Tgs1 methyltransferase (MTase) is responsible for conversion of the m(7)G caps of snRNAs and snoRNAs to a 2,2,7- trimethylguanosine structure. To learn more about the evolutionary origin of Tgs1 and to identify structural features required for its activity, we performed a structure-function study. By using sequence comparison and phylogenetic analysis, we found that Tgs1 shows strongest similarity to Mj0882, a protein related to a family comprised of bacterial rRNA:m(2)G MTases RsmC and RsmD. The structural information of Mj0882 was used to build a homology model of Tgs1p which allowed us to predict the range of the minimal globular MTase domain and the localization of other residues that may be important for enzyme function. To further characterize functional domains of Tgs1, mutants were constructed and tested for their effects on cell viability, subcellular localization and binding to the small nuclear ribonucleoproteins (snRNPs) and small nucleolar RNPs (snoRNPs). We found that the N-terminal domain of the hypermethylase is dispensable for binding to the common snRNPs and snoRNPs proteins but essential for correct nucleolar localization. Site- directed mutagenesis of Tgs1 allowed also the identification of the residues likely to be involved in the formation of the m7G-binding site and the catalytic center.


Asunto(s)
Metiltransferasas/metabolismo , Caperuzas de ARN/metabolismo , ARN Nuclear Pequeño/metabolismo , ARN Nucleolar Pequeño/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Dominio Catalítico/genética , División Celular/genética , Nucléolo Celular/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metiltransferasas/química , Metiltransferasas/genética , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
7.
Cell Rep ; 5(4): 1082-94, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24210826

RESUMEN

The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single-molecule fluorescence in situ hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase occupancy genome wide. We propose that the THO complex is required for tuning the dynamic of gene-nuclear pore association and mRNP release to the same high pace of transcription initiation.


Asunto(s)
Cromatina/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Poro Nuclear/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Transcripción Genética
8.
Mol Cell ; 9(4): 891-901, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11983179

RESUMEN

The m(7)G caps of most spliceosomal snRNAs and certain snoRNAs are converted posttranscriptionally to 2,2,7-trimethylguanosine (m(3)G) cap structures. Here, we show that yeast Tgs1p, an evolutionarily conserved protein carrying a signature of S-AdoMet methyltransferase, is essential for hypermethylation of the m(7)G caps of both snRNAs and snoRNAs. Deletion of the yeast TGS1 gene abolishes the conversion of the m(7)G to m(3)G caps and produces a cold-sensitive splicing defect that correlates with the retention of U1 snRNA in the nucleolus. Consistently, Tgs1p is also localized in the nucleolus. Our results suggest a trafficking pathway in which yeast snRNAs and snoRNAs cycle through the nucleolus to undergo m(7)G cap hypermethylation.


Asunto(s)
Nucléolo Celular/enzimología , Guanosina/metabolismo , Hidroliasas , Metiltransferasas/fisiología , Análogos de Caperuza de ARN/biosíntesis , Caperuzas de ARN/metabolismo , ARN de Hongos/metabolismo , ARN Nuclear Pequeño/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Secuencias de Aminoácidos , Autoantígenos/fisiología , Frío , Evolución Molecular , Guanosina/análogos & derivados , Metilación , Metiltransferasas/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Estructura Terciaria de Proteína , Análogos de Caperuza de ARN/fisiología , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/fisiología , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos
9.
Exp Cell Res ; 299(1): 199-208, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15302587

RESUMEN

The nuclear import signal of snRNPs is composed of two essential components, the m(3)G cap structure of the snRNA and the Sm core NLS carried by the Sm protein core complex. We have previously proposed that, in yeast, this last determinant is represented by a basic-rich protuberance formed by the C-terminal extensions of Sm proteins. In mammals, as well as in other organisms, this component has not yet been precisely defined. Using GFP-Sm fusion constructs and immunolocalization as well as biochemical experiments, we show here that the C-terminal domains of human SmD1 and SmD3 proteins possess nuclear localization properties. Deletions of these domains increase cytoplasmic fluorescence and cytoplasmic localization of GFP-Sm mutant fusion alleles. Our results are consistent with a model in which the Sm core NLS is evolutionarily conserved and composed of a basic-rich protuberance formed by C-terminal domains of different Sm subtypes.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transporte Activo de Núcleo Celular/genética , Animales , Autoantígenos , Citoplasma/genética , Citoplasma/metabolismo , Evolución Molecular , Humanos , Sustancias Macromoleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína/genética , ARN Nuclear Pequeño/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Proteínas Nucleares snRNP
10.
EMBO J ; 21(11): 2736-45, 2002 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-12032086

RESUMEN

Nucleolar localization of vertebrate box C/D snoRNA involves transit through Cajal bodies, but the significance of this event is unknown. To define better the function of this compartment, we analyzed here the maturation pathway of mammalian U3. We show that 3'-extended U3 precursors possess a mono-methylated cap, and are not associated with fibrillarin and hNop58. Importantly, these precursors are detected at both their transcription sites and in Cajal bodies. In addition, mature U3, the core box C/D proteins and the human homolog of the methyltransferase responsible for U3 cap tri-methylation, hTgs1, are all present in Cajal bodies. In yeast, U3 follows a similar maturation pathway, and equivalent 3'-extended precursors are enriched in the nucleolus and in the nucleolar body, a nucleolar domain that concentrates Tgs1p under certain growth conditions. Thus, spatial organization of U3 maturation appears to be conserved across evolution, and involves specialized and related nuclear compartments, the nucleolus/nucleolar body in yeast and Cajal bodies in higher eukaryotes. These are likely places for snoRNP assembly, 3' end maturation and cap modification.


Asunto(s)
Núcleo Celular/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/fisiología , Animales , Línea Celular , Nucléolo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cuerpos Enrollados/metabolismo , ADN/metabolismo , Metilación de ADN , Células HeLa , Humanos , Hibridación in Situ , Microscopía Fluorescente , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Xenopus
11.
EMBO Rep ; 4(6): 616-22, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12776181

RESUMEN

The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) requires the cytoplasmic assembly of the Sm-core complex, followed by the hypermethylation of the small nuclear RNA (snRNA) 5' cap. Both the Sm-core complex and the snRNA trimethylguanosine cap are required for the efficient nuclear import of snRNPs. Here, we show that trimethylguanosine synthase 1 (TGS1), the human homologue of the yeast snRNA cap hypermethylase, interacts directly with the survival of motor neuron (SMN) protein. Both proteins are similarly distributed, localizing in the cytoplasm and in nuclear Cajal bodies. The interaction between TGS1 and SMN is disrupted by a mutation in SMN that mimics the predominant isoform of the protein that is expressed in patients with the neurodegenerative disease, spinal muscular atrophy. These data indicate that, in addition to its function in cytoplasmic Sm-core assembly, the SMN protein also functions in the recruitment of the snRNA cap hypermethylase.


Asunto(s)
Metiltransferasas/química , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Autoantígenos , Western Blotting , Línea Celular , Clonación Molecular , Citoplasma/metabolismo , Electroforesis en Gel de Poliacrilamida , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Inmunohistoquímica , Metiltransferasas/metabolismo , Modelos Biológicos , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Isoformas de Proteínas , Proteínas de Unión a Caperuzas de ARN , Receptores Citoplasmáticos y Nucleares/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Distribución Tisular , Proteínas Nucleares snRNP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA