Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 182(3): 625-640.e24, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32702313

RESUMEN

The brain is a site of relative immune privilege. Although CD4 T cells have been reported in the central nervous system, their presence in the healthy brain remains controversial, and their function remains largely unknown. We used a combination of imaging, single cell, and surgical approaches to identify a CD69+ CD4 T cell population in both the mouse and human brain, distinct from circulating CD4 T cells. The brain-resident population was derived through in situ differentiation from activated circulatory cells and was shaped by self-antigen and the peripheral microbiome. Single-cell sequencing revealed that in the absence of murine CD4 T cells, resident microglia remained suspended between the fetal and adult states. This maturation defect resulted in excess immature neuronal synapses and behavioral abnormalities. These results illuminate a role for CD4 T cells in brain development and a potential interconnected dynamic between the evolution of the immunological and neurological systems. VIDEO ABSTRACT.


Asunto(s)
Encéfalo/citología , Linfocitos T CD4-Positivos/metabolismo , Feto/citología , Microglía/citología , Microglía/metabolismo , Sinapsis/metabolismo , Adulto , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Escala de Evaluación de la Conducta , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Niño , Femenino , Feto/embriología , Humanos , Lectinas Tipo C/metabolismo , Pulmón/citología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neurogénesis/genética , Parabiosis , Células Piramidales/metabolismo , Células Piramidales/fisiología , Análisis de la Célula Individual , Bazo/citología , Bazo/metabolismo , Sinapsis/inmunología , Transcriptoma
2.
J Immunol ; 206(9): 2109-2121, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33858960

RESUMEN

Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.


Asunto(s)
Envejecimiento/genética , Antígenos/genética , Memoria Inmunológica/genética , Linfocitos T/inmunología , Envejecimiento/inmunología , Animales , Antígenos/inmunología , Evolución Clonal , Inestabilidad Genómica , Memoria Inmunológica/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo
3.
EMBO J ; 37(14)2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29752423

RESUMEN

Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8+ T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T/análisis , Animales , Homeostasis , Ratones
5.
Front Microbiol ; 15: 1324403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903788

RESUMEN

Microbiome research has gained much attention in recent years as the importance of gut microbiota in regulating host health becomes increasingly evident. However, the impact of radiation on the microbiota in the murine bone marrow transplantation model is still poorly understood. In this paper, we present key findings from our study on how radiation, followed by bone marrow transplantation with or without T cell depletion, impacts the microbiota in the ileum and caecum. Our findings show that radiation has different effects on the microbiota of the two intestinal regions, with the caecum showing increased interindividual variation, suggesting an impaired ability of the host to regulate microbial symbionts, consistent with the Anna Karenina principle. Additionally, we observed changes in the ileum composition, including an increase in bacterial taxa that are important modulators of host health, such as Akkermansia and Faecalibaculum. In contrast, radiation in the caecum was associated with an increased abundance of several common commensal taxa in the gut, including Lachnospiraceae and Bacteroides. Finally, we found that high doses of radiation had more substantial effects on the caecal microbiota of the T-cell-depleted group than that of the non-T-cell-depleted group. Overall, our results contribute to a better understanding of the complex relationship between radiation and the gut microbiota in the context of bone marrow transplantation and highlight the importance of considering different intestinal regions when studying microbiome responses to environmental stressors.

6.
Front Immunol ; 13: 1009198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275704

RESUMEN

Mature T cells are selected for recognizing self-antigens with low to intermediate affinity in the thymus. Recently, the relative differences in self-reactivity among individual T-cell clones were appreciated as important factors regulating their fate and immune response, but the role of self-reactivity in T-cell biology is incompletely understood. We addressed the role of self-reactivity in T-cell diversity by generating an atlas of mouse peripheral CD8+ T cells, which revealed two unconventional populations of antigen-inexperienced T cells. In the next step, we examined the steady-state phenotype of monoclonal T cells with various levels of self-reactivity. Highly self-reactive clones preferentially differentiate into antigen-inexperienced memory-like cells, but do not form a population expressing type I interferon-induced genes, showing that these two subsets have unrelated origins. The functional comparison of naïve monoclonal CD8+ T cells specific to the identical model antigen did not show any correlation between the level of self-reactivity and the magnitude of the immune response.


Asunto(s)
Linfocitos T CD8-positivos , Interferón Tipo I , Ratones , Animales , Timo , Células Clonales , Autoantígenos
7.
J Exp Med ; 219(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35699942

RESUMEN

Interleukin 2 (IL-2) is a key homeostatic cytokine, with therapeutic applications in both immunogenic and tolerogenic immune modulation. Clinical use has been hampered by pleiotropic functionality and widespread receptor expression, with unexpected adverse events. Here, we developed a novel mouse strain to divert IL-2 production, allowing identification of contextual outcomes. Network analysis identified priority access for Tregs and a competitive fitness cost of IL-2 production among both Tregs and conventional CD4 T cells. CD8 T and NK cells, by contrast, exhibited a preference for autocrine IL-2 production. IL-2 sourced from dendritic cells amplified Tregs, whereas IL-2 produced by B cells induced two context-dependent circuits: dramatic expansion of CD8+ Tregs and ILC2 cells, the latter driving a downstream, IL-5-mediated, eosinophilic circuit. The source-specific effects demonstrate the contextual influence of IL-2 function and potentially explain adverse effects observed during clinical trials. Targeted IL-2 production therefore has the potential to amplify or quench particular circuits in the IL-2 network, based on clinical desirability.


Asunto(s)
Interleucina-2 , Células Asesinas Naturales , Linfocitos T Reguladores , Animales , Inmunidad Innata , Interleucina-2/biosíntesis , Interleucina-2/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
8.
Stem Cell Reports ; 16(8): 1999-2013, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34242616

RESUMEN

Hematopoietic stem cell transplantation (HSCT) is a frequent therapeutic approach to restore hematopoiesis in patients with hematologic diseases. Patients receive a hematopoietic stem cell (HSC)-enriched donor cell infusion also containing immune cells, which may have a beneficial effect by eliminating residual neoplastic cells. However, the effect that donor innate immune cells may have on the donor HSCs has not been deeply explored. Here, we evaluate the influence of donor natural killer (NK) cells on HSC fate, concluded that NK cells negatively affect HSC frequency and function, and identified interferon-gamma (IFNγ) as a potential mediator. Interestingly, improved HSC fitness was achieved by NK cell depletion from murine and human donor infusions or by blocking IFNγ activity. Thus, our data suggest that suppression of inflammatory signals generated by donor innate immune cells can enhance engraftment and hematopoietic reconstitution during HSCT, which is particularly critical when limited HSC numbers are available and the risk of engraftment failure is high.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Donantes de Tejidos , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/inmunología , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Perfilación de la Expresión Génica/métodos , Supervivencia de Injerto/genética , Supervivencia de Injerto/inmunología , Células Madre Hematopoyéticas/metabolismo , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Depleción Linfocítica/métodos , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos
9.
Mol Oncol ; 14(10): 2403-2419, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32696549

RESUMEN

Myelodysplastic syndromes (MDS) are preleukemic disorders characterized by clonal growth of mutant hematopoietic stem and progenitor cells. MDS are associated with proinflammatory signaling, dysregulated immune response, and cell death in the bone marrow (BM). Aging, autoinflammation and autoimmunity are crucial features of disease progression, concordant with promoting growth of malignant clones and accumulation of mutations. Suprabasin (SBSN), a recently proposed proto-oncogene of unknown function, physiologically expressed in stratified epithelia, is associated with poor prognosis of several human malignancies. Here, we showed that SBSN is expressed in the BM by myeloid cell subpopulations, including myeloid-derived suppressor cells, and is secreted into BM plasma and peripheral blood of MDS patients. The highest expression of SBSN was present in a patient group with poor prognosis. SBSN levels in the BM correlated positively with blast percentage and negatively with CCL2 chemokine levels and lymphocyte count. In vitro treatment of leukemic cells with interferon-gamma and demethylating agent 5-azacytidine (5-AC) induced SBSN expression. This indicated that aberrant cytokine levels in the BM and epigenetic landscape modifications in MDS patients may underlie ectopic expression of SBSN. Our findings suggest SBSN as a candidate biomarker of high-risk MDS with a possible role in disease progression and therapy resistance.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Médula Ósea/metabolismo , Síndromes Mielodisplásicos/metabolismo , Proteínas de Neoplasias/metabolismo , Antígenos de Diferenciación/sangre , Antígenos de Diferenciación/genética , Azacitidina/farmacología , Biomarcadores/sangre , Biomarcadores/metabolismo , Compartimento Celular/efectos de los fármacos , Línea Celular Tumoral , Quimiocina CCL2/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Interferón gamma/farmacología , Leucocitos Mononucleares/metabolismo , Recuento de Linfocitos , Síndromes Mielodisplásicos/sangre , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Proteínas de Neoplasias/sangre , Proteínas de Neoplasias/genética , Pronóstico , Proto-Oncogenes Mas , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Mol Oncol ; 13(7): 1467-1489, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30919591

RESUMEN

Radiation and chemotherapy represent standard-of-care cancer treatments. However, most patients eventually experience tumour recurrence, treatment failure and metastatic dissemination with fatal consequences. To elucidate the molecular mechanisms of resistance to radio- and chemotherapy, we exposed human cancer cell lines (HeLa, MCF-7 and DU145) to clinically relevant doses of 5-azacytidine or ionizing radiation and compared the transcript profiles of all surviving cell subpopulations, including low-adherent stem-like cells. Stress-mobilized low-adherent cell fractions differed from other survivors in terms of deregulation of hundreds of genes, including those involved in interferon response. Exposure of cancer cells to interferon-gamma but not interferon-beta resulted in the development of a heterogeneous, low-adherent fraction comprising not only apoptotic/necrotic cells but also live cells exhibiting active Notch signalling and expressing stem-cell markers. Chemical inhibition of mitogen-activated protein kinase/ERK kinase (MEK) or siRNA-mediated knockdown of extracellular signal-regulated kinase 1/2 (Erk1/2) and interferon responsible factor 1 (IRF1) prevented mobilization of the surviving low-adherent population, indicating that interferon-gamma-mediated loss of adhesion and anoikis resistance required an active Erk pathway interlinked with interferon signalling by transcription factor IRF1. Notably, a skin-specific protein suprabasin (SBSN), a recently identified oncoprotein, was among the top scoring genes upregulated in surviving low-adherent cancer cells induced by 5-azacytidine or irradiation. SBSN expression required the activity of the MEK/Erk pathway, and siRNA-mediated knockdown of SBSN suppressed the low-adherent fraction in irradiated, interferon-gamma- and 5-azacytidine-treated cells, respectively, implicating SBSN in genotoxic stress-induced phenotypic plasticity and stress resistance. Importantly, SBSN expression was observed in human clinical specimens of colon and ovarian carcinomas, as well as in circulating tumour cells and metastases of the 4T1 mouse model. The association of SBSN expression with progressive stages of cancer development indicates its role in cancer evolution and therapy resistance.


Asunto(s)
Antígenos de Diferenciación/genética , Antineoplásicos/farmacología , Azacitidina/farmacología , Interferones/farmacología , Proteínas de Neoplasias/genética , Neoplasias/tratamiento farmacológico , Animales , Anoicis/efectos de los fármacos , Anoicis/efectos de la radiación , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/genética , Neoplasias/radioterapia , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de la radiación , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación
11.
Immunol Lett ; 203: 57-61, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30243945

RESUMEN

It is well established that lymphopenia induces the formation of the memory-phenotype T cells without the exposure to foreign antigens. More recently, the memory-phenotype antigen-inexperienced memory T cells were described in lymphoreplete mice and called virtual memory T cells. In this review, we compare multiple aspects of the biology of lymphopenia-induced memory T cells and virtual memory T cells, including cytokine requirements, the role of T-cell receptor specificity in the differentiation process, gene expression signature, and the immune response. Based on this comparison, we conclude that lymphopenia-induced memory T cells and virtual memory T cells most likely represent a single T-cell subset, for which we propose a term 'homeostatic memory T cells'.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Citocinas/inmunología , Memoria Inmunológica , Linfopenia/inmunología , Modelos Inmunológicos , Animales , Linfocitos T CD8-positivos/patología , Humanos , Linfopenia/patología
12.
Leuk Res ; 69: 12-17, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29614393

RESUMEN

Lenalidomide therapy represents meaningful progress in the treatment of anemic patients with myelodysplastic syndromes with del(5q). We present our initial lenalidomide experience and the positive effect of combining erythropoietin and steroids with lenalidomide in refractory and relapsed patients. We treated by lenalidomide 55 (42 female; 13 male; median age 69) chronically transfused lower risk MDS patients with del(5q) (45) and non-del(5q) (10). Response, meaning transfusion independence (TI) lasting ≥ eight weeks, was achieved in 38 (90%) of analyzed patients with del(5q), of whom three achieved TI only by adding erythropoietin ±â€¯prednisone. Another five patients responded well to this combination when their anemia relapsed later during the treatment. In the non-del(5q) group only one patient with RARS-T reached TI. Cytogenetic response was reached in 64% (32% complete, 32% partial response). The TP53 mutation was detected in 7 (18%) patients; four patients progressed to higher grade MDS or acute myeloid leukemia (AML). All seven RAEB-1 patients cleared bone marrow blasts during lenalidomide treatment and reached complete remission (CR); however, three later progressed to higher grade MDS or AML. Lenalidomide represents effective treatment for del(5q) group and combination with prednisone and erythropoietin may be used for non-responders or therapy failures.


Asunto(s)
Eritropoyetina/uso terapéutico , Glucocorticoides/uso terapéutico , Factores Inmunológicos/uso terapéutico , Lenalidomida/uso terapéutico , Síndromes Mielodisplásicos/tratamiento farmacológico , Prednisona/uso terapéutico , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 5 , República Checa , Eritropoyetina/administración & dosificación , Femenino , Genes p53 , Glucocorticoides/administración & dosificación , Humanos , Factores Inmunológicos/administración & dosificación , Lenalidomida/administración & dosificación , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Prednisona/administración & dosificación , Recurrencia , Inducción de Remisión , Factores de Riesgo
14.
Oncoimmunology ; 5(10): e1183860, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853634

RESUMEN

Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal stem cell disorders characterized by ineffective hematopoiesis frequently progressing into acute myeloid leukemia (AML), with emerging evidence implicating aberrant bone marrow (BM) microenvironment and inflammation-related changes. 5-azacytidine (5-AC) represents standard MDS treatment. Besides inhibiting DNA/RNA methylation, 5-AC has been shown to induce DNA damage and apoptosis in vitro. To provide insights into in vivo effects, we assessed the proinflammatory cytokines alterations during MDS progression, cytokine changes after 5-AC, and contribution of inflammatory comorbidities to the cytokine changes in MDS patients. We found that IL8, IP10/CXCL10, MCP1/CCL2 and IL27 were significantly elevated and IL12p70 decreased in BM of MDS low-risk, high-risk and AML patients compared to healthy donors. Repeated sampling of the high-risk MDS patients undergoing 5-AC therapy revealed that the levels of IL8, IL27 and MCP1 in BM plasma were progressively increasing in agreement with in vitro experiments using several cancer cell lines. Moreover, the presence of inflammatory diseases correlated with higher levels of IL8 and MCP1 in low-risk but not in high-risk MDS. Overall, all forms of MDS feature a deregulated proinflammatory cytokine landscape in the BM and such alterations are further augmented by therapy of MDS patients with 5-AC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA