Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pineal Res ; 70(4): e12735, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33793975

RESUMEN

Intrinsically photosensitive retinal ganglion cells convey intrinsic, melanopsin-based, photoreceptive signals alongside those produced by rods and cones to the suprachiasmatic nucleus (SCN) circadian clock. To date, experimental data suggest that melanopsin plays a more significant role in measuring ambient light intensity than cone photoreception. Such studies have overwhelmingly used diffuse light stimuli, whereas light intensity in the world around us varies across space and time. Here, we investigated the extent to which melanopsin or cone signals support circadian irradiance measurements in the presence of naturalistic spatiotemporal variations in light intensity. To address this, we first presented high- and low-contrast movies to anaesthetised mice whilst recording extracellular electrophysiological activity from the SCN. Using a mouse line with altered cone sensitivity (Opn1mwR mice) and multispectral light sources we then selectively varied irradiance of the movies for specific photoreceptor classes. We found that steps in melanopic irradiance largely account for the light induced-changes in SCN activity over a range of starting light intensities and in the presence of spatiotemporal modulation. By contrast, cone-directed changes in irradiance only influenced SCN activity when spatiotemporal contrast was low. Consistent with these findings, under housing conditions where we could independently adjust irradiance for melanopsin versus cones, the period lengthening effects of constant light on circadian rhythms in behaviour were reliably determined by melanopic irradiance, regardless of irradiance for cones. These data add to the growing evidence that modulating effective irradiance for melanopsin is an effective strategy for controlling the circadian impact of light.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Luz/efectos adversos , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Opsinas de Bastones/efectos de la radiación , Núcleo Supraquiasmático/fisiología , Animales , Conducta Animal/efectos de la radiación , Ritmo Circadiano/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Curr Biol ; 31(15): 3391-3400.e4, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34111401

RESUMEN

Color vision, originating with opponent processing of spectrally distinct photoreceptor signals, plays important roles in animal behavior.1-4 Surprisingly, however, comparatively little is understood about color processing in the brain, including in widely used laboratory mammals such as mice. The retinal gradient in S- and M-cone opsin (co-)expression has traditionally been considered an impediment to mouse color vision.5-8 However, recent data indicate that mice exhibit robust chromatic discrimination within the central-upper visual field.9 Retinal color opponency has been reported to emerge from superimposing inhibitory surround receptive fields on the cone opsin expression gradient, and by introducing opponent rod signals in retinal regions with sparse M-cone opsin expression.10-13 The relative importance of these proposed mechanisms in determining the properties of neurons at higher visual processing stages remains unknown. We address these questions using multielectrode recordings from the lateral geniculate nucleus (LGN) in mice with altered M-cone spectral sensitivity (Opn1mwR) and multispectral stimuli that allow selective modulation of signaling by individual opsin classes. Remarkably, we find many (∼25%) LGN cells are color opponent, that such cells are localized to a distinct medial LGN zone and that their properties cannot simply be explained by the proposed retinal opponent mechanisms. Opponent responses in LGN can be driven solely by cones, independent of cone-opsin expression gradients and rod input, with many cells exhibiting spatially congruent antagonistic receptive fields. Our data therefore suggest previously unidentified mechanisms may support extensive and sophisticated color processing in the mouse LGN.


Asunto(s)
Visión de Colores , Opsinas de los Conos , Cuerpos Geniculados/fisiología , Animales , Percepción de Color , Opsinas de los Conos/fisiología , Ratones , Células Fotorreceptoras Retinianas Conos/fisiología , Opsinas de Bastones/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA