Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 43(11): 2223-2230, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37706321

RESUMEN

BACKGROUND: In recent years, fate-mapping lineage studies in mouse models have led to major advances in vascular biology by allowing investigators to track specific cell populations in vivo. One of the most frequently used lineage tracing approaches involves tamoxifen-inducible CreERT-LoxP systems. However, tamoxifen treatment can also promote effects independent of Cre recombinase activation, many of which have not been fully explored. METHODS: To elucidate off-target effects of tamoxifen, male and female mice were either unmanipulated or injected with tamoxifen or corn oil. All mice received PCSK9 (proprotein convertase subtilisin/kexin type 9)-AAV (adeno-associated virus) injections and a modified Western diet to induce hypercholesterolemia. After 2 weeks, serum cholesterol and liver morphology were assessed. To determine the duration of any tamoxifen effects in long-term atherosclerosis experiments, mice received either 12 days of tamoxifen at baseline or 12 days plus 2 sets of 5-day tamoxifen boosters; all mice received PCSK9-AAV injections and a modified Western diet to induce hypercholesterolemia. After 24 weeks, serum cholesterol and aortic sinus plaque burden were measured. RESULTS: After 2 weeks of atherogenic treatment, mice injected with tamoxifen demonstrated significantly reduced serum cholesterol levels compared with uninjected- or corn oil-treated mice. However, there were no differences in PCSK9-mediated knockdown of LDL (low-density lipoprotein) receptors between the groups. Additionally, tamoxifen-treated mice exhibited significantly increased hepatic lipid accumulation compared with the other groups. Finally, the effects of tamoxifen remained for at least 8 weeks after completion of injections, with mice demonstrating persistent decreased serum cholesterol and impaired atherosclerotic plaque formation. CONCLUSIONS: In this study, we establish that tamoxifen administration results in decreased serum cholesterol, decreased plaque formation, and increased hepatic lipid accumulation. These alterations represent significant confounding variables in atherosclerosis research, and we urge future investigators to take these findings into consideration when planning and executing their own atherosclerosis experiments.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Placa Aterosclerótica , Masculino , Femenino , Ratones , Animales , Proproteína Convertasa 9/metabolismo , Hipercolesterolemia/tratamiento farmacológico , Aceite de Maíz , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Aterosclerosis/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Colesterol , Ratones Endogámicos C57BL
2.
Circulation ; 145(7): 513-530, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35000411

RESUMEN

BACKGROUND: Aortic valve stenosis is a sexually dimorphic disease, with women often presenting with sustained fibrosis and men with more extensive calcification. However, the intracellular molecular mechanisms that drive these clinically important sex differences remain underexplored. METHODS: Hydrogel biomaterials were designed to recapitulate key aspects of the valve tissue microenvironment and to serve as a culture platform for sex-specific valvular interstitial cells (VICs; precursors to profibrotic myofibroblasts). The hydrogel culture system was used to interrogate intracellular pathways involved in sex-dependent VIC-to-myofibroblast activation and deactivation. RNA sequencing was used to define pathways involved in driving sex-dependent activation. Interventions with small molecule inhibitors and siRNA transfections were performed to provide mechanistic insight into sex-specific cellular responses to microenvironmental cues, including matrix stiffness and exogenously delivered biochemical factors. RESULTS: In both healthy porcine and human aortic valves, female leaflets had higher baseline activation of the myofibroblast marker α-smooth muscle actin compared with male leaflets. When isolated and cultured, female porcine and human VICs had higher levels of basal α-smooth muscle actin stress fibers that further increased in response to the hydrogel matrix stiffness, both of which were higher than in male VICs. A transcriptomic analysis of male and female porcine VICs revealed Rho-associated protein kinase signaling as a potential driver of this sex-dependent myofibroblast activation. Furthermore, we found that genes that escape X-chromosome inactivation such as BMX and STS (encoding for Bmx nonreceptor tyrosine kinase and steroid sulfatase, respectively) partially regulate the elevated female myofibroblast activation through Rho-associated protein kinase signaling. This finding was confirmed by treating male and female VICs with endothelin-1 and plasminogen activator inhibitor-1, factors that are secreted by endothelial cells and known to drive myofibroblast activation through Rho-associated protein kinase signaling. CONCLUSIONS: Together, in vivo and in vitro results confirm sex dependencies in myofibroblast activation pathways and implicate genes that escape X-chromosome inactivation in regulating sex differences in myofibroblast activation and subsequent aortic valve stenosis progression. Our results underscore the importance of considering sex as a biological variable to understand the molecular mechanisms of aortic valve stenosis and to help guide sex-based precision therapies.


Asunto(s)
Válvula Aórtica/citología , Expresión Génica , Genes Ligados a X , Miofibroblastos/metabolismo , Inactivación del Cromosoma X , Actinas/genética , Actinas/metabolismo , Animales , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Biomarcadores , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Masculino , Miofibroblastos/efectos de los fármacos , Factores Sexuales , Transducción de Señal , Porcinos , Transcriptoma
3.
Arterioscler Thromb Vasc Biol ; 40(2): 394-403, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31852223

RESUMEN

OBJECTIVE: Pathological vascular remodeling and excessive perivascular fibrosis are major contributors to reduced vessel compliance that exacerbates cardiovascular diseases, for instance, promoting clinically relevant myocardial remodeling. Inflammation plays a significant role in both pathological vascular remodeling and fibrosis. We previously demonstrated that smooth muscle cell-specific PTEN depletion promotes significant vascular fibrosis and accumulation of inflammatory cells. In the current study, we aimed to determine the beneficial role of systemic PTEN elevation on Ang II (angiotensin II)-induced vascular fibrosis and remodeling. Approach and Results: Transgenic mice carrying additional copies of the wild-type Pten gene (super PTEN [sPTEN]) and WT littermates were subjected to Ang II or saline infusion for 14 or 28 days. Compared with WT, Ang II-induced vascular fibrosis was significantly blunted in sPTEN mice, as shown by histochemical stainings and label-free second harmonic generation imaging. The protection against Ang II was recapitulated in sPTEN mice bearing WT bone marrow but not in WT mice reconstituted with sPTEN bone marrow. Ang II-induced elevation of profibrotic and proinflammatory gene expression observed in WT mice was blocked in aortic tissue of sPTEN mice. Immunofluorescent staining and flow cytometry both indicated that perivascular infiltration of T cells and macrophages was significantly inhibited in sPTEN mice. In vitro induction of PTEN expression suppressed Ang II-induced Ccl2 expression in vascular smooth muscle cells. CONCLUSIONS: Systemic PTEN elevation mediates protection against Ang II-induced vascular inflammation and fibrosis predominantly through effects in resident vascular cells. Our data highly support that pharmacological upregulation of PTEN could be a novel and viable approach for the treatment of pathological vascular fibrosis.


Asunto(s)
Regulación de la Expresión Génica , Músculo Liso Vascular/metabolismo , Fosfohidrolasa PTEN/genética , Enfermedades Vasculares/genética , Remodelación Vascular/genética , Angiotensina II/toxicidad , Animales , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Citometría de Flujo , Masculino , Ratones , Ratones Transgénicos , Músculo Liso Vascular/patología , Fosfohidrolasa PTEN/biosíntesis , ARN/genética , Ratas , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
4.
Arterioscler Thromb Vasc Biol ; 40(8): 1854-1869, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32580634

RESUMEN

OBJECTIVE: Our recent work demonstrates that PTEN (phosphatase and tensin homolog) is an important regulator of smooth muscle cell (SMC) phenotype. SMC-specific PTEN deletion promotes spontaneous vascular remodeling and PTEN loss correlates with increased atherosclerotic lesion severity in human coronary arteries. In mice, PTEN overexpression reduces plaque area and preserves SMC contractile protein expression in atherosclerosis and blunts Ang II (angiotensin II)-induced pathological vascular remodeling, suggesting that pharmacological PTEN upregulation could be a novel therapeutic approach to treat vascular disease. Approach and Results: To identify novel PTEN activators, we conducted a high-throughput screen using a fluorescence based PTEN promoter-reporter assay. After screening ≈3400 compounds, 11 hit compounds were chosen based on level of activity and mechanism of action. Following in vitro confirmation, we focused on 5-azacytidine, a DNMT1 (DNA methyltransferase-1) inhibitor, for further analysis. In addition to PTEN upregulation, 5-azacytidine treatment increased expression of genes associated with a differentiated SMC phenotype. 5-Azacytidine treatment also maintained contractile gene expression and reduced inflammatory cytokine expression after PDGF (platelet-derived growth factor) stimulation, suggesting 5-azacytidine blocks PDGF-induced SMC de-differentiation. However, these protective effects were lost in PTEN-deficient SMCs. These findings were confirmed in vivo using carotid ligation in SMC-specific PTEN knockout mice treated with 5-azacytidine. In wild type controls, 5-azacytidine reduced neointimal formation and inflammation while maintaining contractile protein expression. In contrast, 5-azacytidine was ineffective in PTEN knockout mice, indicating that the protective effects of 5-azacytidine are mediated through SMC PTEN upregulation. CONCLUSIONS: Our data indicates 5-azacytidine upregulates PTEN expression in SMCs, promoting maintenance of SMC differentiation and reducing pathological vascular remodeling in a PTEN-dependent manner.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Fosfohidrolasa PTEN/fisiología , Remodelación Vascular/efectos de los fármacos , Animales , Azacitidina/farmacología , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Fosfohidrolasa PTEN/genética , Factor de Crecimiento Derivado de Plaquetas/farmacología , Regiones Promotoras Genéticas
5.
Arterioscler Thromb Vasc Biol ; 34(6): 1162-70, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24723556

RESUMEN

OBJECTIVE: Lymphatic vessels collect extravasated fluid and proteins from tissues to blood circulation as well as play an essential role in lipid metabolism by taking up intestinal chylomicrons. Previous studies have shown that impairment of lymphatic vessel function causes lymphedema and fat accumulation, but clear connections between arterial pathologies and lymphatic vessels have not been described. APPROACH AND RESULTS: Two transgenic mouse strains with lymphatic insufficiency (soluble vascular endothelial growth factor 3 [sVEGFR3] and Chy) were crossed with atherosclerotic mice deficient of low-density lipoprotein receptor and apolipoprotein B48 (LDLR(-/-)/ApoB(100/100)) to study the effects of insufficient lymphatic vessel transport on lipoprotein metabolism and atherosclerosis. Both sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had higher plasma cholesterol levels compared with LDLR(-/-)/ApoB(100/100) control mice during both normal chow diet (16.3 and 13.7 versus 8.2 mmol/L, respectively) and Western-type high-fat diet (eg, after 2 weeks of fat diet, 45.9 and 42.6 versus 30.2 mmol/L, respectively). Cholesterol and triglyceride levels in very-low-density lipoprotein and low-density lipoprotein fractions were increased. Atherosclerotic lesions in young and intermediate cohorts of sVEGFR3×LDLR(-/-)/ApoB(100/100) mice progressed faster than in control mice (eg, intermediate cohort mice at 6 weeks, 18.3% versus 7.7% of the whole aorta, respectively). In addition, lesions in sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had much less lymphatic vessels than lesions in control mice (0.33% and 1.07% versus 7.45% of podoplanin-positive vessels, respectively). CONCLUSIONS: We show a novel finding linking impaired lymphatic vessels to lipoprotein metabolism, increased plasma cholesterol levels, and enhanced atherogenesis.


Asunto(s)
Aterosclerosis/etiología , Hipercolesterolemia/complicaciones , Lipoproteínas/metabolismo , Vasos Linfáticos/fisiopatología , Animales , Apolipoproteínas B/fisiología , Colesterol/metabolismo , Humanos , Lípidos/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de LDL/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología
6.
Front Cell Infect Microbiol ; 14: 1377077, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572314

RESUMEN

Introduction: The pathogenic bacterium Helicobacter pylori has evolved glycan-mediated mechanisms to evade host immune defenses. This study tests the hypothesis that genetic disruption of H. pylori glycan biosynthesis alters immune recognition and response by human gastric epithelial cells and monocyte-derived dendritic cells. Methods: To test this hypothesis, human cell lines were challenged with wildtype H. pylori alongside an array of H. pylori glycosylation mutants. The relative levels of immune response were measured via immature dendritic cell maturation and cytokine secretion. Results: Our findings indicate that disruption of lipopolysaccharide biosynthesis diminishes gastric cytokine production, without disrupting dendritic cell recognition and activation. In contrast, variable immune responses were observed in protein glycosylation mutants which prompted us to test the hypothesis that phase variation plays a role in regulating bacterial cell surface glycosylation and subsequent immune recognition. Lewis antigen presentation does not correlate with extent of immune response, while the extent of lipopolysaccharide O-antigen elaboration does. Discussion: The outcomes of this study demonstrate that H. pylori glycans modulate the host immune response. This work provides a foundation to pursue immune-based tailoring of bacterial glycans towards modulating immunogenicity of microbial pathogens.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Lipopolisacáridos/metabolismo , Estómago/patología , Polisacáridos/metabolismo , Citocinas/metabolismo , Infecciones por Helicobacter/microbiología , Mucosa Gástrica/microbiología
7.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895472

RESUMEN

Cardiac fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) material resulting in cardiac tissue scarring and dysfunction. While it is commonly accepted that myofibroblasts are the major contributors to ECM deposition in cardiac fibrosis, their origin remains debated. By combining lineage tracing and RNA sequencing, our group made the paradigm-shifting discovery that a subpopulation of resident vascular stem cells residing within the aortic, carotid artery, and femoral aartery adventitia (termed AdvSca1-SM cells) originate from mature vascular smooth muscle cells (SMCs) through an in situ reprogramming process. SMC-to-AdvSca1-SM reprogramming and AdvSca1-SM cell maintenance is dependent on induction and activity of the transcription factor, KLF4. However, the molecular mechanism whereby KLF4 regulates AdvSca1-SM phenotype remains unclear. In the current study, leveraging a highly specific AdvSca1-SM cell reporter system, single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomic approaches, we demonstrate the profibrotic differentiation trajectory of coronary artery-associated AdvSca1-SM cells in the setting of Angiotensin II (AngII)-induced cardiac fibrosis. Differentiation was characterized by loss of stemness-related genes, including Klf4 , but gain of expression of a profibrotic phenotype. Importantly, these changes were recapitulated in human cardiac hypertrophic tissue, supporting the translational significance of profibrotic transition of AdvSca1-SM-like cells in human cardiomyopathy. Surprisingly and paradoxically, AdvSca1-SM-specific genetic knockout of Klf4 prior to AngII treatment protected against cardiac inflammation and fibrosis, indicating that Klf4 is essential for the profibrotic response of AdvSca1-SM cells. Overall, our data reveal the contribution of AdvSca1-SM cells to myofibroblasts in the setting of AngII-induced cardiac fibrosis. KLF4 not only maintains the stemness of AdvSca1-SM cells, but also orchestrates their response to profibrotic stimuli, and may serve as a therapeutic target in cardiac fibrosis.

8.
ACS Infect Dis ; 9(10): 2025-2035, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37698279

RESUMEN

Glycans that coat the surface of bacteria are compelling antibiotic targets because they contain distinct monosaccharides that are linked to pathogenesis and are absent in human cells. Disrupting glycan biosynthesis presents a path to inhibiting the ability of a bacterium to infect the host. We previously demonstrated that O-glycosides act as metabolic inhibitors and disrupt bacterial glycan biosynthesis. Inspired by a recent study which showed that thioglycosides (S-glycosides) are 10 times more effective than O-glycosides at inhibiting glycan biosynthesis in mammalian cells, we crafted a panel of S-glycosides based on rare bacterial monosaccharides. The novel thioglycosides altered glycan biosynthesis and fitness in pathogenic bacteria but had no notable effect on glycosylation or growth in beneficial bacteria or mammalian cells. In contrast to findings in mammalian cells, S-glycosides and O-glycosides exhibited comparable potency in bacteria. However, S-glycosides exhibited enhanced selectivity relative to O-glycosides. These novel metabolic inhibitors will allow selective perturbation of the bacterial glycocalyx for functional studies and set the stage to expand our antibiotic arsenal.


Asunto(s)
Tioglicósidos , Animales , Humanos , Tioglicósidos/farmacología , Polisacáridos Bacterianos , Bacterias/metabolismo , Glicósidos/farmacología , Monosacáridos , Antibacterianos/farmacología , Mamíferos/metabolismo
9.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503181

RESUMEN

We previously established that vascular smooth muscle-derived adventitial progenitor cells (AdvSca1-SM) preferentially differentiate into myofibroblasts and contribute to fibrosis in response to acute vascular injury. However, the role of these progenitor cells in chronic atherosclerosis has not been defined. Using an AdvSca1-SM lineage tracing model, scRNA-Seq, flow cytometry, and histological approaches, we confirmed that AdvSca1-SM cells localize throughout the vessel wall and atherosclerotic plaques, where they primarily differentiate into fibroblasts, SMCs, or remain in a stem-like state. Klf4 knockout specifically in AdvSca1-SM cells induced transition to a more collagen-enriched myofibroblast phenotype compared to WT mice. Additionally, Klf4 depletion drastically modified the phenotypes of non-AdvSca1-SM-derived cells, resulting in more contractile SMCs and atheroprotective macrophages. Functionally, overall plaque burden was not altered with Klf4 depletion, but multiple indices of plaque vulnerability were reduced. Collectively, these data support that modulating the AdvSca1-SM population confers increased protection from the development of unstable atherosclerotic plaques.

10.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36976650

RESUMEN

Vascular smooth muscle-derived Sca1+ adventitial progenitor (AdvSca1-SM) cells are tissue-resident, multipotent stem cells that contribute to progression of vascular remodeling and fibrosis. Upon acute vascular injury, AdvSca1-SM cells differentiate into myofibroblasts and are embedded in perivascular collagen and the extracellular matrix. While the phenotypic properties of AdvSca1-SM-derived myofibroblasts have been defined, the underlying epigenetic regulators driving the AdvSca1-SM-to-myofibroblast transition are unclear. We show that the chromatin remodeler Smarca4/Brg1 facilitates AdvSca1-SM myofibroblast differentiation. Brg1 mRNA and protein were upregulated in AdvSca1-SM cells after acute vascular injury, and pharmacological inhibition of Brg1 by the small molecule PFI-3 attenuated perivascular fibrosis and adventitial expansion. TGF-ß1 stimulation of AdvSca1-SM cells in vitro reduced expression of stemness genes while inducing expression of myofibroblast genes that was associated with enhanced contractility; PFI blocked TGF-ß1-induced phenotypic transition. Similarly, genetic knockdown of Brg1 in vivo reduced adventitial remodeling and fibrosis and reversed AdvSca1-SM-to-myofibroblast transition in vitro. Mechanistically, TGF-ß1 promoted redistribution of Brg1 from distal intergenic sites of stemness genes and recruitment to promoter regions of myofibroblast-related genes, which was blocked by PFI-3. These data provide insight into epigenetic regulation of resident vascular progenitor cell differentiation and support that manipulating the AdvSca1-SM phenotype will provide antifibrotic clinical benefits.


Asunto(s)
Miofibroblastos , Lesiones del Sistema Vascular , Humanos , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Cromatina/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Epigénesis Genética , Diferenciación Celular , Músculo Liso Vascular , Fibrosis , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
JCI Insight ; 8(22)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991018

RESUMEN

We previously established that vascular smooth muscle-derived adventitial progenitor cells (AdvSca1-SM) preferentially differentiate into myofibroblasts and contribute to fibrosis in response to acute vascular injury. However, the role of these progenitor cells in chronic atherosclerosis has not been defined. Using an AdvSca1-SM cell lineage tracing model, scRNA-Seq, flow cytometry, and histological approaches, we confirmed that AdvSca1-SM-derived cells localized throughout the vessel wall and atherosclerotic plaques, where they primarily differentiated into fibroblasts, smooth muscle cells (SMC), or remained in a stem-like state. Krüppel-like factor 4 (Klf4) knockout specifically in AdvSca1-SM cells induced transition to a more collagen-enriched fibroblast phenotype compared with WT mice. Additionally, Klf4 deletion drastically modified the phenotypes of non-AdvSca1-SM-derived cells, resulting in more contractile SMC and atheroprotective macrophages. Functionally, overall plaque burden was not altered with Klf4 deletion, but multiple indices of plaque composition complexity, including necrotic core area, macrophage accumulation, and fibrous cap thickness, were reduced. Collectively, these data support that modulation of AdvSca1-SM cells through KLF4 depletion confers increased protection from the development of potentially unstable atherosclerotic plaques.


Asunto(s)
Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/patología , Factor 4 Similar a Kruppel , Miocitos del Músculo Liso/patología , Células Madre/patología , Músculo Liso/patología
12.
ACS Infect Dis ; 8(4): 889-900, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35302355

RESUMEN

Bacterial cell envelope glycans are compelling antibiotic targets as they are critical for strain fitness and pathogenesis yet are virtually absent from human cells. However, systematic study and perturbation of bacterial glycans remains challenging due to their utilization of rare deoxy amino l-sugars, which impede traditional glycan analysis and are not readily available from natural sources. The development of chemical tools to study bacterial glycans is a crucial step toward understanding and altering these biomolecules. Here we report an expedient methodology to access azide-containing analogues of a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose. Azide-containing l-sugar analogues facilitated metabolic profiling of bacterial glycans in a range of Gram-negative bacteria and revealed differential utilization of l-sugars in symbiotic versus pathogenic bacteria. Further application of these probes will refine our knowledge of the glycan repertoire in diverse bacteria and aid in the design of novel antibiotics.


Asunto(s)
Azidas , Bacterias , Azidas/química , Bacterias/metabolismo , Fucosa , Humanos , Polisacáridos Bacterianos/química , Azúcares
13.
Cardiovasc Res ; 118(6): 1452-1465, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33989378

RESUMEN

Cardiovascular diseases are characterized by chronic vascular dysfunction and provoke pathological remodelling events, such as neointima formation, atherosclerotic lesion development, and adventitial fibrosis. While lineage-tracing studies have shown that phenotypically modulated smooth muscle cells (SMCs) are the major cellular component of neointimal lesions, the cellular origins and microenvironmental signalling mechanisms that underlie remodelling along the adventitial vascular layer are not fully understood. However, a growing body of evidence supports a unique population of adventitial lineage-restricted progenitor cells expressing the stem cell marker, stem cell antigen-1 (Sca1; AdvSca1 cells) as important effectors of adventitial remodelling and suggests that they are at least partially responsible for subsequent pathological changes that occur in the media and intima. AdvSca1 cells are being studied in murine models of atherosclerosis, perivascular fibrosis, and neointima formation in response to acute vascular injury. Depending on the experimental conditions, AdvSca1 cells exhibit the capacity to differentiate into SMCs, endothelial cells, chondrocytes, adipocytes, and pro-remodelling cells, such as myofibroblasts and macrophages. These data indicate that AdvSca1 cells may be a targetable cell population to influence the outcomes of pathologic vascular remodelling. Important questions remain regarding the origins of AdvSca1 cells and the essential signalling mechanisms and microenvironmental factors that regulate both maintenance of their stem-like, progenitor phenotype and their differentiation into lineage-specified cell types. Adding complexity to the story, recent data indicate that the collective population of adventitial progenitor cells is likely composed of several smaller, lineage-restricted subpopulations, which are not fully defined by their transcriptomic profile and differentiation capabilities. The aim of this review is to outline the heterogeneity of Sca1+ adventitial progenitor cells, summarize their role in vascular homeostasis and remodelling, and comment on their translational relevance in humans.


Asunto(s)
Aterosclerosis , Ataxias Espinocerebelosas , Animales , Aterosclerosis/metabolismo , Diferenciación Celular/genética , Células Endoteliales/patología , Fibrosis , Homeostasis , Ratones , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Células Madre/metabolismo , Remodelación Vascular
14.
Bioeng Transl Med ; 7(3): e10394, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36176599

RESUMEN

Aortic valve stenosis (AVS) is a progressive fibrotic disease that is caused by thickening and stiffening of valve leaflets. At the cellular level, quiescent valve interstitial cells (qVICs) activate to myofibroblasts (aVICs) that persist within the valve tissue. Given the persistence of myofibroblasts in AVS, epigenetic mechanisms have been implicated. Here, we studied changes that occur in VICs during myofibroblast activation by using a hydrogel matrix to recapitulate different stiffnesses in the valve leaflet during fibrosis. We first compared the chromatin landscape of qVICs cultured on soft hydrogels and aVICs cultured on stiff hydrogels, representing the native and diseased phenotypes respectively. Using assay for transposase-accessible chromatin sequencing (ATAC-Seq), we found that open chromatin regions in aVICs were enriched for transcription factor binding motifs associated with mechanosensing pathways compared to qVICs. Next, we used RNA-Seq to show that the open chromatin regions in aVICs correlated with pro-fibrotic gene expression, as aVICs expressed higher levels of contractile fiber genes, including myofibroblast markers such as alpha smooth muscle actin (αSMA), compared to qVICs. In contrast, chromatin remodeling genes were downregulated in aVICs compared to qVICs, indicating qVICs may be protected from myofibroblast activation through epigenetic mechanisms. Small molecule inhibition of one of these remodelers, CREB Binding Protein (CREBBP), prevented qVICs from activating to aVICs. Notably, CREBBP is more abundant in valves from healthy patients compared to fibrotic valves. Our findings reveal the role of mechanical regulation in chromatin remodeling during VIC activation and quiescence and highlight one potential therapeutic target for treating AVS.

15.
Am J Physiol Renal Physiol ; 301(6): F1326-33, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21921021

RESUMEN

Diabetic complications of nephropathy and accelerated atherosclerosis are associated with vascular remodeling and dysregulated angiogenesis. Matrix metalloproteinases (MMP) modify extracellular matrix during vascular remodeling and are excreted in urine of patients with vascular malformation or tumor angiogenesis. We hypothesized that urinary MMP activities would be sensitive biomarkers for vascular remodeling in diabetic complications. Activities of MMP-2, MMP-9, and its complex with neutrophil gelatinase-associated lipocalin (NGAL/MMP-9) were measured by substrate gel zymography in urine from nondiabetic (ND) and type 1 diabetic (T1D) rodents that were susceptible to both T1D-induced plaque angiogenesis and nephropathy, or nephropathy alone. Additionally, these urine activities were measured in ND and T1D adolescents. Urinary MMP-9, MMP-2, and NGAL/MMP-9 activities were increased and more prevalent in T1D compared with ND controls. Urinary MMP-2 activity was detected in mice with T1D-induced plaque neovascularization. In nephropathy models, urinary NGAL/MMP-9 and MMP-9 activities appeared before onset of albuminuria, whereas MMP-2 was absent or delayed. Finally, urinary MMP activities were increased in adolescents with early stages of T1D. Urinary MMP activities may be sensitive, noninvasive, and clinically useful biomarkers for predicting vascular remodeling in diabetic renal and vascular complications.


Asunto(s)
Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Tipo 1/enzimología , Nefropatías Diabéticas/enzimología , Metaloproteinasas de la Matriz/metabolismo , Neovascularización Patológica/enzimología , Placa Aterosclerótica/enzimología , Adolescente , Animales , Biomarcadores/orina , Niño , Diabetes Mellitus Experimental/orina , Diabetes Mellitus Tipo 1/orina , Femenino , Humanos , Masculino , Metaloproteinasas de la Matriz/orina , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Adulto Joven
16.
J Am Coll Cardiol ; 78(18): 1782-1795, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34711337

RESUMEN

BACKGROUND: The effects of nonphysiological flow generated by continuous-flow (CF) left ventricular assist devices (LVADs) on the aorta remain poorly understood. OBJECTIVES: The authors sought to quantify indexes of fibrosis and determine the molecular signature of post-CF-LVAD vascular remodeling. METHODS: Paired aortic tissue was collected at CF-LVAD implant and subsequently at transplant from 22 patients. Aortic wall morphometry and fibrillar collagen content (a measure of fibrosis) was quantified. In addition, whole-transcriptome profiling by RNA sequencing and follow-up immunohistochemistry were performed to evaluate CF-LVAD-mediated changes in aortic mRNA and protein expression. RESULTS: The mean age was 52 ± 12 years, with a mean duration of CF-LVAD of 224 ± 193 days (range 45-798 days). There was a significant increase in the thickness of the collagen-rich adventitial layer from 218 ± 110 µm pre-LVAD to 410 ± 209 µm post-LVAD (P < 0.01). Furthermore, there was an increase in intimal and medial mean fibrillar collagen intensity from 22 ± 11 a.u. pre-LVAD to 41 ± 24 a.u. post-LVAD (P < 0.0001). The magnitude of this increase in fibrosis was greater among patients with longer durations of CF-LVAD support. CF-LVAD led to profound down-regulation in expression of extracellular matrix-degrading enzymes, such as matrix metalloproteinase-19 and ADAMTS4, whereas no evidence of fibroblast activation was noted. CONCLUSIONS: There is aortic remodeling and fibrosis after CF-LVAD that correlates with the duration of support. This fibrosis is due, at least in part, to suppression of extracellular matrix-degrading enzyme expression. Further research is needed to examine the contribution of nonphysiological flow patterns on vascular function and whether modulation of pulsatility may improve vascular remodeling and long-term outcomes.


Asunto(s)
Enfermedades de la Aorta , Circulación Asistida , Matriz Extracelular/enzimología , Insuficiencia Cardíaca/terapia , Corazón Auxiliar/efectos adversos , Proteína ADAMTS4/metabolismo , Enfermedades de la Aorta/etiología , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Circulación Asistida/efectos adversos , Circulación Asistida/instrumentación , Circulación Asistida/métodos , Femenino , Fibrosis , Humanos , Inmunohistoquímica , Efectos Adversos a Largo Plazo/patología , Masculino , Metaloproteinasas de la Matriz Secretadas/metabolismo , Persona de Mediana Edad , Análisis de Secuencia de ARN/métodos , Remodelación Vascular/fisiología
17.
Arterioscler Thromb Vasc Biol ; 29(11): 1764-71, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19729613

RESUMEN

OBJECTIVE: Abdominal aortic aneurysm (AAA) is a life-threatening disease affecting almost 10% of the population over age 65. Generation of AAAs by infusion of angiotensin (Ang) II in apolipoprotein E-knockout (ApoE(-/-)) mice is an animal model which supports an imbalance of the renin-angiotensin system in the pathogenesis of AAA. The effect of statins on AngII-mediated AAA formation and the associated neovascularization is not known. Here we determined the effect of simvastatin and the ERK inhibitor, CI1040, on AngII-stimulated AAA formation. METHODS AND RESULTS: ApoE(-/-) mice infused for 28 days with AngII using osmotic minipumps were treated with placebo, 10 mg/kg/d simvastatin, or 100 mg/kg/d CI1040. 95% of AngII-treated mice developed AAA with neovascularization of the lesion, increased ERK phosphorylation, MCP-1 secretion, and MMP activity. These effects were markedly reversed by simvastatin and in part by CI1040. Furthermore, simvastatin and the ERK inhibitor U0126 reversed AngII-stimulated angiogenesis and MMP secretion by human umbilical vein endothelial cells. CONCLUSIONS: These data support the conclusion that simvastatin interferes with AAA formation induced by AngII in ApoE(-/-) mice at least in part via ERK inhibition.


Asunto(s)
Aneurisma de la Aorta Abdominal/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , MAP Quinasa Quinasa Quinasa 3/antagonistas & inhibidores , Simvastatina/farmacología , Angiotensina II , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacología , Benzamidas/farmacología , Presión Sanguínea/efectos de los fármacos , Western Blotting , Modelos Animales de Enfermedad , Inmunohistoquímica , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Valores de Referencia , Sistema Renina-Angiotensina/efectos de los fármacos
18.
ACS Infect Dis ; 6(12): 3247-3259, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33186014

RESUMEN

Bacterial cell surface glycans are quintessential drug targets due to their critical role in colonization of the host, pathogen survival, and immune evasion. The dense cell envelope glycocalyx contains distinctive monosaccharides that are stitched together into higher order glycans to yield exclusively bacterial structures that are critical for strain fitness and pathogenesis. However, the systematic study and inhibition of bacterial glycosylation enzymes remains challenging. Bacteria produce glycans containing rare sugars refractory to traditional glycan analysis, complicating the study of bacterial glycans and the identification of their biosynthesis machinery. To ease the study of bacterial glycans in the absence of detailed structural information, we used metabolic glycan labeling to detect changes in glycan biosynthesis. Here, we screened wild-type versus mutant strains of the gastric pathogen Helicobacter pylori, ultimately permitting the identification of genes involved in glycoprotein and lipopolysaccharide biosynthesis. Our findings provide the first evidence that H. pylori protein glycosylation proceeds via a lipid carrier-mediated pathway that overlaps with lipopolysaccharide biosynthesis. Protein glycosylation mutants displayed fitness defects consistent with those induced by small molecule glycosylation inhibitors. Broadly, our results suggest a facile approach to screen for bacterial glycosylation genes and gain insight into their biosynthesis and functional importance, even in the absence of glycan structural information.


Asunto(s)
Genes Bacterianos , Polisacáridos Bacterianos , Glicoproteínas , Glicosilación , Monosacáridos , Polisacáridos Bacterianos/química
19.
Chem Sci ; 11(7): 1761-1774, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34123271

RESUMEN

The bacterial cell wall is a quintessential drug target due to its critical role in colonization of the host, pathogen survival, and immune evasion. The dense cell wall glycocalyx contains distinctive monosaccharides that are absent from human cells, and proper assembly of monosaccharides into higher-order glycans is critical for bacterial fitness and pathogenesis. However, the systematic study and inhibition of bacterial glycosylation enzymes remains challenging. Bacteria produce glycans containing rare deoxy amino sugars refractory to traditional glycan analysis, complicating the study of bacterial glycans and the creation of glycosylation inhibitors. To ease the study of bacterial glycan function in the absence of detailed structural or enzyme information, we crafted metabolic inhibitors based on rare bacterial monosaccharide scaffolds. Metabolic inhibitors were assessed for their ability to interfere with glycan biosynthesis and fitness in pathogenic and symbiotic bacterial species. Three metabolic inhibitors led to dramatic structural and functional defects in Helicobacter pylori. Strikingly, these inhibitors acted in a bacteria-selective manner. These metabolic inhibitors will provide a platform for systematic study of bacterial glycosylation enzymes not currently possible with existing tools. Moreover, their selectivity will provide a pathway for the development of novel, narrow-spectrum antibiotics to treat infectious disease. Our inhibition approach is general and will expedite the identification of bacterial glycan biosynthesis inhibitors in a range of systems, expanding the glycochemistry toolkit.

20.
JCI Insight ; 5(23)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33119549

RESUMEN

Resident vascular adventitial SCA1+ progenitor (AdvSca1) cells are essential in vascular development and injury. However, the heterogeneity of AdvSca1 cells presents a unique challenge in understanding signaling pathways orchestrating their behavior in homeostasis and injury responses. Using smooth muscle cell (SMC) lineage-tracing models, we identified a subpopulation of AdvSca1 cells (AdvSca1-SM) originating from mature SMCs that undergo reprogramming in situ and exhibit a multipotent phenotype. Here we employed lineage tracing and RNA-sequencing to define the signaling pathways regulating SMC-to-AdvSca1-SM cell reprogramming and AdvSca1-SM progenitor cell phenotype. Unbiased hierarchical clustering revealed that genes related to hedgehog/WNT/beta-catenin signaling were significantly enriched in AdvSca1-SM cells, emphasizing the importance of this signaling axis in the reprogramming event. Leveraging AdvSca1-SM-specific expression of GLI-Kruppel family member GLI1 (Gli1), we generated Gli1-CreERT2-ROSA26-YFP reporter mice to selectively track AdvSca1-SM cells. We demonstrated that physiologically relevant vascular injury or AdvSca1-SM cell-specific Kruppel-like factor 4 (Klf4) depletion facilitated the proliferation and differentiation of AdvSca1-SM cells to a profibrotic myofibroblast phenotype rather than macrophages. Surprisingly, AdvSca1-SM cells selectively contributed to adventitial remodeling and fibrosis but little to neointima formation. Together, these findings strongly support therapeutics aimed at preserving the AdvSca1-SM cell phenotype as a viable antifibrotic approach.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Remodelación Vascular/genética , Animales , Arterias/metabolismo , Diferenciación Celular/genética , Femenino , Fibrosis/genética , Fibrosis/metabolismo , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Células Madre/metabolismo , Remodelación Vascular/fisiología , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA