Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Chem ; 151: 107689, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111119

RESUMEN

Immune-mediated inflammatory diseases (IMIDs) comprise a broad spectrum of conditions characterized by systemic inflammation affecting various organs and tissues, for which there is no known cure. The isoform-specific inhibition of phosphodiesterase-4B (PDE4B) over PDE4D constitutes an effective therapeutic strategy for the treatment of IMIDs that minimizes the adverse effects associated with non-selective PDE4 inhibitors. Thus, we report a new class of isoquinolone derivatives as next-generation PDE4 inhibitors for effective management of rheumatoid arthritis (RA) and psoriasis. Among the series, 8 compounds i.e. 1e, 1l, 1m, 1n, 1o, 2m, 2o and 3o showed promising PDE4B inhibition (>80 %) in vitro with IC50 ∼ 1.4-6.2 µM. The compound 1l was identified as an initial hit and was pursued for further studies. According to structure-activity relationship (SAR), an allyl group at C-4 position improved PDE4B inhibition. The correlation between in vitro activity data and binding affinities obtained via molecular docking suggested that the high-affinity binding to PDE4B is a prerequisite for the effective inhibition of PDE4B. Notably, the hit 1l showed selectivity towards PDE4B over PDE4D in vitro. Furthermore, 1l treatment (30 mg/kg) in the adjuvant-induced arthritis (AIA) rat model induced by complete Freund's adjuvant (CFA) demonstrated anti-arthritic potential via ameliorating paw swelling and body weight, narrowing joint space, reducing excessive immune cells infiltration and pannus formation in addition to reducing mRNA expression of pro-inflammatory cytokines such as TNF-α and IL-6 in synovial tissues of experimental rats. Additionally, 1l reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes. The treatment of these cells with 1l markedly reduced the protein levels of Ki67 and mRNA levels of pro-inflammatory cytokines e.g. IL-17A and TNF-α suggesting its potent anti-psoriatic potential. Furthermore, 1l did not show any significant adverse effects when evaluated in a systematic toxicity (e.g. teratogenicity, hepatotoxicity and cardiotoxicity) studies in zebrafish at the tested concentrations (1-100 µM) and the NOAEL (no-observed-adverse-effect level) was found to be 100 µM. Thus, with promising anti-inflammatory effects both in vitro and in vivo along with PDE4B selectivity with an acceptable safety margin, 1l emerged as a new and promising inhibitor for further studies.


Asunto(s)
Artritis Reumatoide , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Inhibidores de Fosfodiesterasa 4 , Psoriasis , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/química , Inhibidores de Fosfodiesterasa 4/síntesis química , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Psoriasis/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Animales , Relación Estructura-Actividad , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Humanos , Ratas , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Pez Cebra , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inducido químicamente , Artritis Experimental/patología , Masculino
2.
Bioorg Chem ; 121: 105667, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35182886

RESUMEN

In search of potent and new anti-inflammatory agents, we explored a new class of isocoumarin derivatives possessing the 3-oxoalkyl moiety at C-4 position. These compounds were synthesized via the FeCl3 catalyzed construction of isocoumarin ring. The methodology involved coupling of 2-alkynyl benzamides with alkyl vinyl ketone and proceeded via a regioselective cyclization to give the desired compound as a result of formation of CO and CC bonds. A large number of isocoumarins were synthesized and assessed against PDE4B in vitro. While isocoumarins containing an aminosulfonyl moiety attached to the C-3 aryl ring showed encouraging inhibition of PDE4B, some of the derivatives devoid of aminosulfonyl moiety also showed considerable inhibition. According to the SAR analysis the C6H4NHSO2R2-m moiety at C-3 position of the isocoumarin ring was favorable when the R2 was chosen as an aryl or 2-thienyl group whereas the presence of F or OMe substituent at C-7 of the isocoumarin ring was found to be beneficial. The compound 5f with IC50 values 0.125 ± 0.032 and 0.43 ± 0.013 µM against PDE4B and 4D, respectively was identified as an initial hit. It showed in silico interaction with the PHE678 residue in the CR3 region of PDE4B and relatively less number of interactions with PDE4D. Besides showing the PDE4 selectivity over other PDEs and TNF-α inhibition in vitro the compound 5f at an intraperitoneal dose of 30 mg/kg demonstrated the protective effects against the development of arthritis and potent immunomodulatory activity in adjuvant induced arthritic (AIA) rats. Furthermore, no significant adverse effects were observed for this compound when evaluated in a systematic toxicity (e.g. teratogenicity, hepatotoxicity and cardiotoxicity) studies in zebrafish at various concentrations. Collectively, being a new, potent, moderately selective and safe inhibitor of PDE4B the isocoumarin 5f can be progressed into further pharmacological studies.


Asunto(s)
Compuestos Férricos , Isocumarinas , Animales , Catálisis , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Isocumarinas/química , Ratas , Relación Estructura-Actividad , Pez Cebra/metabolismo
3.
Bioorg Chem ; 115: 105265, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34426160

RESUMEN

In spite of possessing a wide range of pharmacological properties the anti-inflammatory activities of isoquinolin-1(2H)-ones were rarely known or explored earlier. PDE4 inhibitors on the other hand in addition to their usefulness in treating inflammatory diseases have been suggested to attenuate the cytokine storm in COVID-19 especially TNF-α. In our effort, a new class of isoquinolin-1(2H)-ones derivatives containing an aminosulfonyl moiety were designed and explored as potential inhibitors of PDE4. Accordingly, for the first time a CuCl2-catalyzed inexpensive, faster and ligand/additive free approach has been developed for the synthesis of these predesigned isoquinolin-1(2H)-one derivatives via the coupling-cyclization strategy. Thus, the CuCl2-catalyzed reaction of 2-iodobenzamides with appropriate terminal alkynes proceeded with high chemo and regioselectivity affording the desired compounds in 77-84% yield within 1-1.5 h. The methodology also afforded simpler isoquinolin-1(2H)-ones devoid of aminosulfonyl moiety showing a broader generality and scope of this approach. Several of the synthesized compounds especially 3c, 3k and 3s showed impressive inhibition (83-90%) of PDE4B when tested at 10 µM in vitro whereas compounds devoid of aminosulfonyl moiety was found to be less active. In spite of high inhibition showed at 10 µM these compounds did not show proper concertation dependent inhibition below 1 µM that was reflected in their IC50 values e.g. 2.43 ± 0.32, 3.26 ± 0.24 and 3.63 ± 0.80 µM for 3k, 3o and 3s respectively. The anti-inflammatory potential of these compounds was indicated by their TNF-α inhibition (60-50% at 10 µM). The in silico docking studies of these molecules suggested good interactions with PDE4B and selective inhibition of PDE4B by 3k over PDE4D that was supported by in vitro assay results. These observations together with the favorable ADME and safety predicted for 3kin silico not only suggested 3k as an interesting hit molecule for further studies but also reveal the first example of isoquinolin-1(2H)-one based inhibitor of PDE4B.


Asunto(s)
Antiinflamatorios/química , Cobre/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Isoquinolinas/química , Inhibidores de Fosfodiesterasa 4/química , Animales , Antiinflamatorios/síntesis química , Catálisis , Ciclización , Pruebas de Enzimas , Humanos , Isoquinolinas/síntesis química , Ratones , Estructura Molecular , Inhibidores de Fosfodiesterasa 4/síntesis química , Células RAW 264.7 , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
4.
Bioorg Chem ; 97: 103691, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143019

RESUMEN

In spite of their various pharmacological properties the anti-inflammatory potential of benzo[c]phenanthridines remained underexplored. Thus, for the first time PDE4 inhibitory potential of 11,12-dihydro benzo[c]phenanthridine/benzo[c]phenanthridine was assessed in vitro. Elegant synthesis of these compounds was performed via a multi-step sequence consisting of a Pd-catalyzed unusual construction of 4-allyl isocoumarin ring and FeCl3-mediated intramolecular regio- as well as site-selective arene-allyl cyclization as key steps. The overall strategy involved Sonogashira coupling followed by isocoumarin and isoquinolone synthesis, then chlorination and subsequent cyclization to afford a range of 11,12-dihydro derivatives. One of these dihydro compounds was converted to the corresponding benzo[c]phenanthridine that showed concentration dependent inhibition of PDE4B affording an initial hit molecule. The SAR study suggested that 11,12-dihydro analogs were less potent than the compound having unsaturation at the same part of the ring.


Asunto(s)
Fenantridinas/síntesis química , Fenantridinas/farmacología , Inhibidores de Fosfodiesterasa 4/síntesis química , Inhibidores de Fosfodiesterasa 4/farmacología , Animales , Derivados del Benceno/síntesis química , Derivados del Benceno/química , Derivados del Benceno/farmacología , Catálisis , Línea Celular , Técnicas de Química Sintética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ciclización , Humanos , Isocumarinas/síntesis química , Isocumarinas/química , Simulación del Acoplamiento Molecular , Paladio/química , Fenantridinas/química , Inhibidores de Fosfodiesterasa 4/química
5.
Antioxidants (Basel) ; 12(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37107348

RESUMEN

Oxidative stress is a major hallmark of COPD, contributing to inflammatory signaling, corticosteroid resistance, DNA damage, and accelerated lung aging and cellular senescence. Evidence suggests that oxidative damage is not solely due to exogenous exposure to inhaled irritants, but also endogenous sources of oxidants in the form of reactive oxygen species (ROS). Mitochondria, the major producers of ROS, exhibit impaired structure and function in COPD, resulting in reduced oxidative capacity and excessive ROS production. Antioxidants have been shown to protect against ROS-induced oxidative damage in COPD, by reducing ROS levels, reducing inflammation, and protecting against the development of emphysema. However, currently available antioxidants are not routinely used in the management of COPD, suggesting the need for more effective antioxidant agents. In recent years, a number of mitochondria-targeted antioxidant (MTA) compounds have been developed that are capable of crossing the mitochondria lipid bilayer, offering a more targeted approach to reducing ROS at its source. In particular, MTAs have been shown to illicit greater protective effects compared to non-targeted, cellular antioxidants by further reducing apoptosis and offering greater protection against mtDNA damage, suggesting they are promising therapeutic agents for the treatment of COPD. Here, we review evidence for the therapeutic potential of MTAs as a treatment for chronic lung disease and discuss current challenges and future directions.

6.
Chem Commun (Camb) ; 57(78): 10091-10094, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34515287

RESUMEN

A Pd-catalysed regioselective synthesis of 4,5-disubstituted 7-membered N/O-heterocycles was achieved via the 7-endo-dig cyclization followed by C-C bond formation of 2-(1-alkynyl)phenylacetamide. The ligand/additive free cascade reaction proceeded in the presence of PdCl2 in aqueous MeCN when the separate and individual use of methyl vinyl ketone and allyl bromide generally afforded an O- and N-heterocycle, respectively. The pharmacological assay was performed to identify the first example of a 1H-benzo[d]azepin-2(3H)-one based novel inhibitor of PDE4B.

7.
Eur J Med Chem ; 221: 113514, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33992926

RESUMEN

While anti-inflammatory properties of isocoumarins are known their PDE4 inhibitory potential was not explored previously. In our effort the non-PDE4 inhibitor isocoumarins were transformed into the promising inhibitors via introducing an aminosulfonyl/aminocarboxamide moiety to the C-3 benzene ring attached to the isocoumarin framework. This new class of isocoumarins were synthesized via a PdCl2-catalyzed construction of the 4-allyl substituted 3-aryl isocoumarin ring starting from the appropriate 2-alkynyl benzamide derivative. Several compounds showed good inhibition of PDE4B in vitro and the SAR indicated superiority of aminosulfonamide moiety over aminocarboxamide in terms of PDE4B inhibition. Two compounds 3q and 3u with PDE4B IC50 = 0.43 ± 0.11 and 0.54 ± 0.19 µM and ≥ 2-fold selectivity over PDE4D emerged as initial hits. The participation of aminosulfonamide moiety in PDE4B inhibition and the reason for selectivity though moderate shown by 3q and 3u was revealed by the in silico docking studies. In view of potential usefulness of moderately selective PDE4B inhibitors the compound 3u (that showed PDE4 selectivity over other PDEs) was further evaluated in adjuvant induced arthritic rats. At an intraperitoneal dose of 30 mg/kg the compound showed a significant reduction in paw swelling (in a dose dependent manner), inflammation and pannus formation (in the knee joints) as well as pro-inflammatory gene expression/mRNA levels and increase in body weight. Moreover, besides its TNF-α inhibition and no significant toxicity in an MTT assay the compound did not show any adverse effects in a thorough toxicity studies e.g. teratogenicity, hepatotoxicity, cardiotoxicity and apoptosis in zebrafish. Thus, the isocoumarin 3u emerged as a new, safe and moderately selective PDE4B inhibitor could be useful for inflammatory diseases possibly including COVID-19.


Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Isocumarinas/uso terapéutico , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/metabolismo , Antiinflamatorios/toxicidad , Artritis Experimental/patología , Catálisis , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Embrión no Mamífero/efectos de los fármacos , Femenino , Isocumarinas/síntesis química , Isocumarinas/metabolismo , Isocumarinas/toxicidad , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/patología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Paladio/química , Inhibidores de Fosfodiesterasa 4/síntesis química , Inhibidores de Fosfodiesterasa 4/metabolismo , Inhibidores de Fosfodiesterasa 4/toxicidad , Unión Proteica , Células RAW 264.7 , Ratas Wistar , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/metabolismo , Sulfonamidas/toxicidad , Pez Cebra
8.
Mitochondrion ; 50: 42-50, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669620

RESUMEN

The stress response forms the most ancient defense system in living cells. Heat shock proteins (Hsps) are highly conserved across species and play major roles in mounting the stress response. The emerging information now suggests that Hsp90 family of chaperones display additional cellular roles contributing to diseases like cancer. For this reason, pharmacological targeting of Hsp90 has emerged as a novel antitumor strategy. However, its mitochondrial homologue TRAP1 has not been implicated in cancer with conclusive mechanistic insights. Since understanding the mutational spectrum of cancer cells indicates the outcome of the disease as well as treatment response, we examined mutational spectrum of TRAP1. Our in silico analyses of TRAP1 SNPs and CNVs correlated with the aggressive cancer phenotypes, and are found to be predominant over Hsp90 itself. The increased CNVs have been correlated with increased expression of TRAP1 in metastatic cancer cells, increased ATP production, and decreased oxygen consumption rate of mitochondria. Examining TRAP1 knockdown as well as over expression in metastatic cancer cells furthered our understanding that TRAP1 likely to facilitate the altered energy metabolism in the functional compromise of mitochondrial OXPHOS. Interestingly, the increased ATP levels in the TRAP1 background are found to be independent of glucose oxidation. Our results suggest TRAP1 role in triggering the alternate energy metabolism in cancer cells. Since targeting tumor metabolism is considered as an alternate strategy to combat cancer, we propose pharmacological targeting of TRAP1 to target alternate energy metabolism.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Polimorfismo de Nucleótido Simple , Línea Celular , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Humanos , Neoplasias/genética , Consumo de Oxígeno , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA