Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 237(1): 881-896, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34435368

RESUMEN

Purinergic P2Y receptors, by binding adenosine triphosphate (ATP), are known for enhancing glucose-stimulated insulin secretion (GSIS) in pancreatic ß cells. However, the impact of these receptors in the actin dynamics and insulin granule exocytosis in these cells is not established, neither in normal nor in glucotoxic environment. In this study, we investigate the involvement of P2Y receptors on the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 ß cells exposed to normal or glucotoxic environment and their role in GSIS. Our results show that the activation of P2Y purinergic receptors by ATP or its agonist increase the insulin granules exocytosis and the reorganization of the subcortical actin network and participate in the potentiation of GSIS. In addition, their activation in INS-1832/13 ß-cells, with impaired insulin secretion following exposure to elevated glucose levels, restores GSIS competence through the distal steps of insulin exocytosis. These results are confirmed ex vivo by perifusion experiments on islets from type 2 diabetic (T2D) Goto-Kakizaki (GK) rats. Indeed, the P2Y receptor agonist restores the altered GSIS, which is normally lost in this T2D animal model. Moreover, we observed an improvement of the glucose tolerance, following the acute intraperitoneal injection of the P2Y agonist concomitantly with glucose, in diabetic GK rats. All these data provide new insights into the unprecedented therapeutic role of P2Y purinergic receptors in the pathophysiology of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis , Glucosa/metabolismo , Glucosa/toxicidad , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratas , Receptores Purinérgicos P2Y/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36499613

RESUMEN

The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3ß and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic ß-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas tau/metabolismo , Insulina/metabolismo , Encéfalo/metabolismo
3.
Curr Opin Clin Nutr Metab Care ; 22(1): 82-90, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407222

RESUMEN

PURPOSE OF REVIEW: So far, the tryptophan catabolites generated in the kynurenine pathway have been mainly studied in relation to oncologic and mental health disorders. The current review provides an update on the emerging biomedical interest for kynurenine pathway activity in the field of energy homeostasis and metabolic diseases. RECENT FINDINGS: Kynurenine pathway enzymes are expressed in tissues relevant for energy homeostasis such as fat, skeletal muscle, liver and endocrine pancreas, blood vessel and heart, and are regulated by nutritional and inflammatory signals. Kynurenine pathway metabolites have been proposed as biomarkers for initiation and progression of atherosclerosis and diabetes. Exercise training activation of kynurenine pathway in skeletal muscles increases lipid metabolism and thermogenesis, and it limits weight gain, inflammation, insulin resistance, and glucose intolerance in rodents fed a high-fat diet. Manipulation of kynurenine pathway metabolism through administration of enzyme inhibitors or kynurenine pathway metabolites can serve as novel therapeutic strategy for atherosclerosis, obesity, glucose intolerance, or impaired insulin secretion. SUMMARY: Although we are far from a complete understanding of the role of kynurenine pathway in the modulation of energy homeostasis, targeting kynurenine pathway harbors high potential to expand the range of therapies to prevent and treat metabolic diseases.


Asunto(s)
Quinurenina/metabolismo , Enfermedades Metabólicas/patología , Redes y Vías Metabólicas , Triptófano/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Homeostasis , Humanos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Obesidad/patología
4.
Biochim Biophys Acta ; 1862(8): 1401-11, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27101990

RESUMEN

Actin dynamics in pancreatic ß-cells is involved in insulin exocytosis but the molecular mechanisms of this dynamics and its role in biphasic insulin secretion in pancreatic ß-cells is largely unknown. Moreover, the impact of a glucotoxic environment on the sub-cortical actin network dynamics is poorly studied. In this study, we investigate the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 ß-cells submitted to a normal or glucotoxic environment. Our results show that glucose stimulation leads to a reorganization of the subcortical actin network with a rupture of its interactions with t-SNARE proteins (Syntaxin 1A and SNAP-25), promoting insulin secretion in INS-1 832/13 ß-cells. Prolonged exposure of INS-1 832/13 ß-cells to high-glucose levels (glucotoxicity) leads to the densification of the cortical actin network, which prevents its reorganization under acute glucose, and diminishes the glucose-stimulated insulin secretion, as shown by the decreased number of fusion events. The most interesting in our results is the partial restoration by GLP-1 of the insulin secretion ability from high-glucose treated INS-1 832/13 cells. This improved insulin exocytosis is associated with partial restored actin dynamics and fusion events during the two phases of the secretion, with a preferential involvement of Epac2 signaling in the first phase and a rather involvement of PKA signaling in the second phase of insulin exocytosis. All these data provide some new insights into the mechanism by which current therapeutics may be improving insulin secretion.


Asunto(s)
Actinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Animales , Línea Celular Tumoral , Exocitosis/efectos de los fármacos , Glucosa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratas , Ratas Wistar
5.
Biochimie ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908539

RESUMEN

Amyloidosis forms a large family of pathologies associated with amyloid deposit generated by the formation of amyloid fibrils or plaques. The amyloidogenic proteins and peptides involved in these processes are targeted against almost all organs. In brain they are associated with neurodegenerative disease, and the Translocator Protein (TSPO), overexpressed in these inflammatory conditions, is one of the target for the diagnostic. Moreover, TSPO ligands have been described as promising therapeutic drugs for neurodegenerative diseases. Type 2 diabetes, another amyloidosis, is due to a beta cell mass decrease that has been linked to hIAPP (human islet amyloid polypeptide) fibril formation, leading to the reduction of insulin production. In the present study, in a first approach, we link overexpression of TSPO and inflammation in potentially prediabetic patients. In a second approach, we observed that TSPO deficient rats have higher level of insulin secretion in basal conditions and more IAPP fibrils formation compared with wild type animals. In a third approach, we show that diabetogenic conditions also increase TSPO overexpression and IAPP fibril formation in rat beta pancreatic cell line (INS-1E). These data open the way for further studies in the field of type 2 diabetes treatment or prevention.

6.
Food Funct ; 15(8): 4552-4563, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38584501

RESUMEN

The exploration of edible insects, specifically Alphitobius diaperinus and Tenebrio molitor, as sustainable sources of protein for human consumption is an emerging field. However, research into their effects on intestinal health, especially in relation to inflammation and permeability, remains limited. Using ex vivo and in vivo models of intestinal health and disease, in this study we assess the impact of the above insects on intestinal function by focusing on inflammation, barrier dysfunction and morphological changes. Initially, human intestinal explants were exposed to in vitro-digested extracts of these insects, almond and beef. Immune secretome analysis showed that the inflammatory response to insect-treated samples was comparatively lower than it was for samples exposed to almond and beef. Animal studies using yellow mealworm (Tenebrio molitor) and buffalo (Alphitobius diaperinus) flours were then used to evaluate their safety in healthy rats and LPS-induced intestinal dysfunction rats. Chronic administration of these insect-derived flours showed no adverse effects on behavior, metabolism, intestinal morphology or immune response (such as inflammation or allergy markers) in healthy Wistar rats. Notably, in rats subjected to proinflammatory LPS-induced intestinal dysfunction, T. molitor consumption did not exacerbate symptoms, nor did it increase allergic responses. These findings validate the safety of these edible insects under healthy conditions, demonstrate their innocuity in a model of intestinal dysfunction, and underscore their promise as sustainable and nutritionally valuable dietary protein sources.


Asunto(s)
Insectos Comestibles , Proteínas de Insectos , Ratas Wistar , Tenebrio , Animales , Ratas , Humanos , Masculino , Intestinos/efectos de los fármacos , Intestinos/inmunología , Enfermedades Intestinales , Modelos Animales de Enfermedad , Femenino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos
7.
Am J Physiol Endocrinol Metab ; 305(10): E1309-18, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24064341

RESUMEN

Prolactin (PRL) and placental lactogens stimulate ß-cell replication and insulin production in pancreatic islets and insulinoma cells through binding to the PRL receptor (PRLR). However, the contribution of PRLR signaling to ß-cell ontogeny and function in perinatal life and the effects of the lactogens on adaptive islet growth are poorly understood. We provide evidence that expansion of ß-cell mass during both embryogenesis and the postnatal period is impaired in the PRLR(-/-) mouse model. PRLR(-/-) newborns display a 30% reduction of ß-cell mass, consistent with reduced proliferation index at E18.5. PRL stimulates leucine incorporation and S6 kinase phosphorylation in INS-1 cells, supporting a role for ß-cell mTOR signaling in PRL action. Interestingly, a defect in the development of acini is also observed in absence of PRLR signaling, with a sharp decline in cellular size in both endocrine and exocrine compartments. Of note, a decrease in levels of IGF-II, a PRL target, in the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes, is associated with a lack of PRL-mediated ß-cell proliferation in embryonic pancreatic buds. Reduced pancreatic IGF-II expression in both rat and mouse models suggests that this factor may constitute a molecular link between PRL signaling and cell ontogenesis. Together, these results provide evidence that PRL signaling is essential for pancreas ontogenesis during the critical perinatal window responsible for establishing functional ß-cell reserve.


Asunto(s)
Células Secretoras de Insulina/fisiología , Páncreas/embriología , Prolactina/metabolismo , Receptores de Prolactina/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos , Femenino , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Noqueados , Páncreas/efectos de los fármacos , Páncreas/crecimiento & desarrollo , Embarazo , Prolactina/farmacología , Ratas , Ratas Wistar , Receptores de Prolactina/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
8.
Mol Ther ; 20(10): 1944-52, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22828498

RESUMEN

Endocrine and exocrine insufficiencies are associated with serious diseases such as diabetes and pancreatitis, respectively. Pancreatic cells retain the capacity to regenerate in the context of cell deficiency. The remnant pancreas after pancreatectomy (Px) is a valuable target for testing the efficiency of pharmacological interventions to stimulate cell regeneration. Here, we tested the ability of GSK3ß downregulation on the stimulation of ß- and acinar cell regeneration after 90% Px in adult rats. We developed an in vivo approach based on local silencing of GSK3ß, by delivering antisense morpholino-oligonucleotides within the remnant pancreas of 90% pancreatectomized rats, and evaluated its impact on the regenerative potential of pancreatic ß and exocrine cells. ß-Cell (BC) mass was evaluated by morphometry. Cell proliferation and apoptosis were assessed by 5'bromo 2'deoxyuridine (BrdU) incorporation method and TUNEL assay, respectively. The expression of Sox9, Neurogenin-3 (Ngn3), and PDX1 was evaluated by immunohistochemistry. We show that intrapancreatic GSK3ß knockdown leads to increased BC mass (BCM) in 90% pancreatectomized rats by promoting both BC proliferation and differentiation. Moreover, downregulation of GSK3ß significantly improves exocrine growth and prevents acinar cell apoptosis in vivo. Our study designates GSK3ß as a viable drug target for therapeutic intervention on diseases of endocrine and exocrine pancreas associated with cell deficiency.


Asunto(s)
Células Acinares/fisiología , Glucógeno Sintasa Quinasa 3/genética , Células Secretoras de Insulina/fisiología , Páncreas/fisiología , Regeneración , Células Acinares/citología , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bromodesoxiuridina/análisis , Diferenciación Celular , Proliferación Celular , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen/métodos , Glucógeno Sintasa Quinasa 3 beta , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ/métodos , Células Secretoras de Insulina/citología , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Páncreas/citología , Páncreas Exocrino/citología , Páncreas Exocrino/fisiología , Pancreatectomía/métodos , Ratas , Ratas Wistar , Transactivadores/genética , Transactivadores/metabolismo
9.
Chemosphere ; 314: 137691, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36592828

RESUMEN

Since the use of bisphenol A (BPA) has been restricted because of its endocrine disruptor properties, bisphenol S (BPS) has been widely used as a substitute of BPA. However, BPS exerts similar effects on metabolic health as BPA. The effects of maternal exposure to BPA and BPS on the metabolic health of offspring have been largely documented during the past decade. However, the impact of preconceptional paternal exposure to BPS on progenies remains unexplored. In this study we investigated the impact of paternal exposure to BPS before conception, on the metabolic phenotype of offspring. Male Wistar rats were administered BPS through drinking water at the dose of 4 µg/kg/day (BPS-4 sires) or 40 µg/kg/day (BPS-40 sires) for 2 months before mating with females. The progenies (F1) were studied at fetal stage and in adulthood. We showed that preconceptional paternal exposure to BPS for 2 months did not alter the metabolic status of sires. The female offspring of sires exposed to lower or higher doses of BPS showed no alteration of their metabolic phenotype compared to females from control sires. In contrast, male offspring of BPS-4 sires exhibited increased body weight and body fat/lean ratio, decreased insulin sensitivity and increased glucose-induced insulin secretion at adult age, compared to the male offspring of control sires. Moreover, male offspring of BPS-4 sires developed glucose intolerance later in life. None of these effects were apparent in male offspring of BPS-40 sires. In conclusion, our study provides the first evidence of the non-monotonic and sex-specific effects of preconceptional paternal exposure to BPS on the metabolic health of offspring, suggesting that BPS is not a safe BPA substitute regarding the inter-generational transmission of metabolic disorders through the paternal lineage.


Asunto(s)
Resistencia a la Insulina , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratas , Masculino , Femenino , Animales , Ratas Wistar , Exposición Materna , Exposición Paterna/efectos adversos , Glucosa/metabolismo , Compuestos de Bencidrilo/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
10.
Biomed Pharmacother ; 164: 114895, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37224758

RESUMEN

BACKGROUND AND PURPOSE: Glucocorticoids (GCs) are the main treatment for autoimmune and inflammatory disorders and are also used as immunosuppressive therapy for patients with organ transplantation. However, these treatments have several side effects, including metabolic disorders. Indeed, cortico-therapy may induce insulin resistance, glucose intolerance, disrupted insulin and glucagon secretion, excessive gluconeogenesis, leading to diabetes in susceptible individuals. Recently, lithium has been shown to alleviate deleterious effects of GCs in various diseased conditions. EXPERIMENTAL APPROACH: In this study, using two rat models of GC-induced metabolic disorders, we investigated the effects of Lithium Chloride (LiCl) in the mitigation of deleterious effects of GCs. Rats were treated either with corticosterone or dexamethasone, and with or without LiCl. Animals were then assessed for glucose tolerance, insulin sensitivity, in vivo and ex vivo glucose-induced insulin secretion and hepatic gluconeogenesis. KEY RESULTS: We showed that in rats chronically treated with corticosterone, lithium treatment markedly reduced insulin resistance. In addition, in rats treated with dexamethasone, lithium administration improved glucose tolerance, associated with enhanced insulin secretion in vivo. Moreover, liver gluconeogenesis was reduced upon LiCl treatment. The improvement of insulin secretion in vivo appeared to be due to an indirect regulation of ß cell function, since the ex vivo assessment of insulin secretion and ß cell mass in islets from animals treated with LiCl revealed no difference compared to untreated animals. CONCLUSION AND IMPLICATIONS: Collectively, our data provide evidences for the beneficial effects of lithium to mitigate the adverse metabolic effects of chronic cortico-therapy.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Ratas , Animales , Resistencia a la Insulina/fisiología , Litio/farmacología , Corticosterona , Glucemia/metabolismo , Glucocorticoides , Diabetes Mellitus/inducido químicamente , Insulina/metabolismo , Glucosa/metabolismo , Gluconeogénesis , Dexametasona/efectos adversos , Compuestos de Litio
11.
Front Endocrinol (Lausanne) ; 13: 1099152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37065173

RESUMEN

Diabetes Mellitus is a metabolic disorder characterized by a chronic hyperglycemia due to an impaired insulin secretion and a decreased in peripheral insulin sensitivity. This disease is a major public health problem due to it sharp prevalence. Therefore, it is crucial to readapt therapeutic approaches for the treatment of this pathology. One of the strategies would be through P2-type purinergic receptors pathway via ATP binding. In addition to its well-known role as an intracellular energy intermediary in numerous biochemical and physiological processes, ATP is also an important extracellular signaling molecule. ATP mediates its effects by binding and activating two classes of P2 purinoreceptors: P2X receptors that are ligand-gated ion channel receptors, existing in seven isoforms (P2X 1 to 7) and P2Y receptors that are G-protein coupled receptors, existing in eight isoforms (P2Y 1/2/4/6/11/12/13/14). These receptors are ubiquitously distributed and involved in numerous physiological processes in several tissues. The concept of purinergic signaling, originally formulated by Geoffrey Burnstock (1929-2020), was also found to mediate various responses in the pancreas. Several studies have shown that P2 receptors are expressed in the endocrine pancreas, notably in ß cells, where ATP could modulate their function but also their plasticity and thus play a physiological role in stimulating insulin secretion to face some metabolic demands. In this review, we provide a historical perspective and summarize current knowledge on P2-type purinergic signaling in the regulation of pancreatic ß-cell functional plasticity, which would be a promising novel therapeutic approach for the treatment of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Receptores Purinérgicos P2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/metabolismo , Adenosina Trifosfato/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Receptores Purinérgicos P2/metabolismo
12.
Front Immunol ; 13: 896179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677049

RESUMEN

Type-2 diabetes is a complex disorder that is now considered to have an immune component, with functional impairments in many immune cell types. Type-2 diabetes is often accompanied by comorbid obesity, which is associated with low grade inflammation. However,the immune status in Type-2 diabetes independent of obesity remains unclear. Goto-Kakizaki rats are a non-obese Type-2 diabetes model. The limited evidence available suggests that Goto-Kakizaki rats have a pro-inflammatory immune profile in pancreatic islets. Here we present a detailed overview of the adult Goto-Kakizaki rat immune system. Three converging lines of evidence: fewer pro-inflammatory cells, lower levels of circulating pro-inflammatory cytokines, and a clear downregulation of pro-inflammatory signalling in liver, muscle and adipose tissues indicate a limited pro-inflammatory baseline immune profile outside the pancreas. As Type-2 diabetes is frequently associated with obesity and adipocyte-released inflammatory mediators, the pro-inflammatory milieu seems not due to Type-2 diabetes per se; although this overall reduction of immune markers suggests marked immune dysfunction in Goto-Kakizaki rats.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Biomarcadores , Sistema Inmunológico , Obesidad , Ratas , Ratas Wistar
13.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166509, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914653

RESUMEN

Type 2 diabetes is associated with an inflammatory phenotype in the pancreatic islets. We previously demonstrated that proinflammatory cytokines potently activate the tryptophan/kynurenine pathway (TKP) in INS-1 cells and in normal rat islets. Here we examined: (1) the TKP enzymes expression in the diabetic GK islets; (2) the TKP enzymes expression profiles in the GK islets before and after the onset of diabetes; (3) The glucose-stimulated insulin secretion (GSIS) in vitro in GK islets after KMO knockdown using specific morpholino-oligonucleotides against KMO or KMO blockade using the specific inhibitor Ro618048; (4) The glucose tolerance and GSIS after acute in vivo exposure to Ro618048 in GK rats. We report a remarkable induction of the kmo gene in GK islets and in human islets exposed to proinflammatory conditions. It occurred prominently in beta cells. The increased expression and activity of KMO reflected an acquired adaptation. Both KMO knockdown and specific inhibitor Ro618048 enhanced GSIS in vitro in GK islets. Moreover, acute administration of Ro618048 in vivo improved glucose tolerance, GSIS and basal blood glucose levels in GK rats. These results demonstrate that targeting islet TKP is able to correct defective GSIS. KMO inhibition could represent a potential therapeutic strategy for type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Glucemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Quinurenina/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Morfolinos , Ratas , Ratas Wistar , Triptófano/metabolismo
14.
Am J Physiol Endocrinol Metab ; 301(5): E797-806, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21750265

RESUMEN

cAMP-raising agents with glucagon-like peptide-1 (GLP-1) as the first in class, exhibit multiple actions that are beneficial for the treatment of type 2 diabetic (T2D) patients, including improvement of glucose-induced insulin secretion (GIIS). To gain additional insight into the role of cAMP in the disturbed stimulus-secretion coupling within the diabetic ß-cell, we examined more thoroughly the relationship between changes in islet cAMP concentration and insulin release in the GK/Par rat model of T2D. Basal cAMP content in GK/Par islets was significantly higher, whereas their basal insulin release was not significantly different from that of Wistar (W) islets. Even in the presence of IBMX or GLP-1, their insulin release did not significantly change despite further enhanced cAMP accumulation in both cases. The high basal cAMP level most likely reflects an increased cAMP generation in GK/Par compared with W islets since 1) forskolin dose-dependently induced an exaggerated cAMP accumulation; 2) adenylyl cyclase (AC)2, AC3, and G(s)α proteins were overexpressed; 3) IBMX-activated cAMP accumulation was less efficient and PDE-3B and PDE-1C mRNA were decreased. Moreover, the GK/Par insulin release apparatus appears less sensitive to cAMP, since GK/Par islets released less insulin at submaximal cAMP levels and required five times more cAMP to reach a maximal secretion rate no longer different from W. GLP-1 was able to reactivate GK/Par insulin secretion so that GIIS became indistinguishable from that of W. The exaggerated cAMP production is instrumental, since GLP-1-induced GIIS reactivation was lost in the presence the AC blocker 2',5'-dideoxyadenosine. This GLP-1 effect takes place in the absence of any improvement of the [Ca(2+)](i) response and correlates with activation of the cAMP-dependent PKA-dependent pathway.


Asunto(s)
AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Glucosa/farmacología , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/patología , Masculino , Ratas , Ratas Wistar , Vías Secretoras/efectos de los fármacos , Vías Secretoras/fisiología , Estreptozocina
15.
PLoS One ; 16(9): e0248798, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34570783

RESUMEN

The epithelial tissues of the distal lung are continuously exposed to inhaled air, and are of research interest in studying respiratory exposure to both hazardous and therapeutic materials. Pharmaco-toxicological research depends on the development of sophisticated models of the alveolar epithelium, which better represent the different cell types present in the native lung and interactions between them. We developed an air-liquid interface (ALI) model of the alveolar epithelium which incorporates cell lines which bear features of type I (hAELVi) and type II (NCI-H441) epithelial cells. We compared morphology of single cells and the structure of cell layers of the two lines using light and electron microscopy. Working both in monotypic cultures and cocultures, we measured barrier function by trans-epithelial electrical resistance (TEER), and demonstrated that barrier properties can be maintained for 30 days. We created a mathematical model of TEER development over time based on these data in order to make inferences about the interactions occurring in these culture systems. We assessed expression of a panel of relevant genes that play important roles in barrier function and differentiation. The coculture model was observed to form a stable barrier akin to that seen in hAELVi, while expressing surfactant protein C, and having a profile of expression of claudins and aquaporins appropriate for the distal lung. We described cavities which arise within stratified cell layers in NCI-H441 and cocultured cells, and present evidence that these cavities represent an aberrant apical surface. In summary, our results support the coculture of these two cell lines to produce a model which better represents the breadth of functions seen in native alveolar epithelium.


Asunto(s)
Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/fisiología , Técnicas de Cocultivo/métodos , Transportadoras de Casetes de Unión a ATP/metabolismo , Caveolas/fisiología , Línea Celular , Claudinas/genética , Claudinas/metabolismo , Impedancia Eléctrica , Expresión Génica , Humanos , Surfactantes Pulmonares/metabolismo
16.
Biomolecules ; 11(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069853

RESUMEN

The impact of maternal nutrition on offspring is well documented. However, the implication of pre-conceptional paternal nutrition on the metabolic health of the progeny remains underexplored. Here, we investigated the impact of paternal high-protein diet (HPD, 43.2% protein) consumption on the endocrine pancreas and the metabolic phenotype of offspring. Male Wistar rats were given HPD or standard diet (SD, 18.9% protein) for two months. The progenies (F1) were studied at fetal stage and in adulthood. Body weight, glycemia, glucose tolerance (GT), glucose-induced insulin secretion in vivo (GIIS) and whole-body insulin sensitivity were assessed in male and female F1 offspring. Insulin sensitivity, GT and GIIS were similar between F1 females from HPD (HPD/F1) and SD fathers (SD/F1). Conversely, male HPD/F1 exhibited increased insulin sensitivity (p < 0.05) and decreased GIIS (p < 0.05) compared to male SD/F1. The improvement of insulin sensitivity in HPD/F1 was sustained even after 2 months of high-fat feeding. In male HPD/F1, the ß cell mass was preserved and the ß cell plasticity, following metabolic challenge, was enhanced compared to SD/F1. In conclusion, we provide the first evidence of a sex-specific impact of paternal HPD on the insulin sensitivity and GIIS of their descendants, demonstrating that changes in paternal nutrition alter the metabolic status of their progeny in adulthood.


Asunto(s)
Dieta Rica en Proteínas/efectos adversos , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Exposición Paterna/efectos adversos , Animales , Peso Corporal , Estudios de Casos y Controles , Femenino , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Caracteres Sexuales
17.
Cell Death Dis ; 12(12): 1136, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876563

RESUMEN

Glucocorticoids (GCs) are widely prescribed for their anti-inflammatory and immunosuppressive properties as a treatment for a variety of diseases. The use of GCs is associated with important side effects, including diabetogenic effects. However, the underlying mechanisms of GC-mediated diabetogenic effects in ß-cells are not well understood. In this study we investigated the role of glycogen synthase kinase 3 (GSK3) in the mediation of ß-cell death and dysfunction induced by GCs. Using genetic and pharmacological approaches we showed that GSK3 is involved in GC-induced ß-cell death and impaired insulin secretion. Further, we unraveled the underlying mechanisms of GC-GSK3 crosstalk. We showed that GSK3 is marginally implicated in the nuclear localization of GC receptor (GR) upon ligand binding. Furthermore, we showed that GSK3 regulates the expression of GR at mRNA and protein levels. Finally, we dissected the proper contribution of each GSK3 isoform and showed that GSK3ß isoform is sufficient to mediate the pro-apoptotic effects of GCs in ß-cells. Collectively, in this work we identified GSK3 as a viable target to mitigate GC deleterious effects in pancreatic ß-cells.


Asunto(s)
Glucocorticoides , Glucógeno Sintasa Quinasa 3 , Apoptosis , Muerte Celular , Glucocorticoides/efectos adversos , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/genética
18.
Biomedicines ; 9(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671490

RESUMEN

Down syndrome is a genetic disorder caused by the presence of a third copy of chromosome 21, associated with intellectual disabilities. Down syndrome is associated with anomalies of both the nervous and endocrine systems. Over the past decades, dramatic advances in Down syndrome research and treatment have helped to extend the life expectancy of these patients. Improved life expectancy is obviously a positive outcome, but it is accompanied with the need to address previously overlooked complications and comorbidities of Down syndrome, including obesity and diabetes, in order to improve the quality of life of Down syndrome patients. In this focused review, we describe the associations between Down syndrome and comorbidities, obesity and diabetes, and we discuss the understanding of proposed mechanisms for the association of Down syndrome with metabolic disorders. Drawing molecular mechanisms through which Type 1 diabetes and Type 2 diabetes could be linked to Down syndrome could allow identification of novel drug targets and provide therapeutic solutions to limit the development of metabolic and cognitive disorders.

19.
Nat Commun ; 12(1): 1064, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594056

RESUMEN

Polycystic ovary syndrome (PCOS) is characterized by an oligo-anovulation, hyperandrogenism and polycystic ovarian morphology combined with major metabolic disturbances. However, despite the high prevalence and the human and economic consequences of this syndrome, its etiology remains unknown. In this study, we show that female Goto-Kakizaki (GK) rats, a type 2 diabetes mellitus model, encapsulate naturally all the reproductive and metabolic hallmarks of lean women with PCOS at puberty and in adulthood. The analysis of their gestation and of their fetuses demonstrates that this PCOS-like phenotype is developmentally programmed. GK rats also develop features of ovarian hyperstimulation syndrome. Lastly, a comparison between GK rats and a cohort of women with PCOS reveals a similar reproductive signature. Thus, this spontaneous rodent model of PCOS represents an original tool for the identification of the mechanisms involved in its pathogenesis and for the development of novel strategies for its treatment.


Asunto(s)
Síndrome del Ovario Poliquístico/patología , Adiposidad , Animales , Animales Recién Nacidos , Peso Corporal , Análisis Discriminante , Modelos Animales de Enfermedad , Dislipidemias/patología , Sistema Endocrino/patología , Ciclo Estral , Femenino , Prueba de Tolerancia a la Glucosa , Gonadotropinas/farmacología , Hormonas/sangre , Humanos , Secreción de Insulina , Análisis de los Mínimos Cuadrados , Lípidos/química , Masculino , Intercambio Materno-Fetal , Análisis Multivariante , Ovario/patología , Ovario/fisiopatología , Fenotipo , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/fisiopatología , Embarazo , Ratas Wistar , Reproducción , Maduración Sexual
20.
Am J Physiol Endocrinol Metab ; 298(1): E17-27, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19843875

RESUMEN

The alteration of the beta-cell population in the Goto-Kakizaki rat (GK/Par line), a model of spontaneous type 2 diabetes, has been ascribed to significantly decreased beta-cell replication and neogenesis, while beta-cell apoptosis is surprisingly not enhanced and remains in the normal range. To gain insight into the mechanisms by which those beta-cells are protected from death, we studied ex vivo the apoptotic activity and the expression of a large set of pro/antiapoptotic and pro/antioxidant genes in GK/Par islet cells. This was done in vitro in freshly isolated islets as well as in response to culture conditions and calibrated reactive oxygen species (ROS) exposure (i.e., H2O2). We also investigated the intracellular mechanisms of the diabetic beta-cell response to ROS, the role if any of the intracellular cAMP metabolism, and finally the kinetic of ROS response, taking advantage of the GK/Par rat normoglycemia until weaning. Our results show that the peculiar GK/Par beta-cell phenotype was correlated with an increased expression of a large panel of antioxidant genes as well as pro/antiapoptotic genes. We demonstrate that such combination confers resistance to cytotoxic H2O2 exposure in vitro, raising the possibility that at least some of the activated stress/defense genes have protective effects against H2O2-triggered beta-cell death. We also present some evidence that the GK/Par beta-cell resistance to H2O2 is at least partly cAMP dependent. Finally, we show that such a phenotype is not innate but is spontaneously acquired after diabetes onset as the result of an adaptive response to the diabetic environment.


Asunto(s)
Apoptosis/fisiología , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Adaptación Fisiológica/fisiología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , División Celular/fisiología , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Peróxido de Hidrógeno/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Oxidantes/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Mutantes , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA