Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Comput Biol ; 15(7): e1007225, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31323035

RESUMEN

Exposure to the environmental toxin ß-methylamino-L-alanine (BMAA) is linked to amyotrophic lateral sclerosis (ALS), but its disease-promoting mechanism remains unknown. We propose that incorporation of BMAA into the ALS-linked protein Cu,Zn superoxide dismutase (SOD1) upon translation promotes protein misfolding and aggregation, which has been linked to ALS onset and progression. Using molecular simulation and predictive energetic computation, we demonstrate that substituting any serine with BMAA in SOD1 results in structural destabilization and aberrant dynamics, promoting neurotoxic SOD1 aggregation. We propose that translational incorporation of BMAA into SOD1 is directly responsible for its toxicity in neurodegeneration, and BMAA modification of SOD1 may serve as a biomarker of ALS.


Asunto(s)
Aminoácidos Diaminos/farmacocinética , Aminoácidos Diaminos/toxicidad , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Sitios de Unión/genética , Biología Computacional , Toxinas de Cianobacterias , Estabilidad de Enzimas/genética , Humanos , Simulación de Dinámica Molecular , Agregación Patológica de Proteínas/etiología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Pliegue de Proteína/efectos de los fármacos , Modificación Traduccional de las Proteínas/efectos de los fármacos , Modificación Traduccional de las Proteínas/genética , Estructura Cuaternaria de Proteína , Superóxido Dismutasa-1/genética
2.
Biochemistry ; 58(30): 3302-3313, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31283187

RESUMEN

Thymidylate synthase (TS) is a dimeric enzyme conserved in all life forms that exhibits the allosteric feature of half-the-sites activity. Neither the reason for nor the mechanism of this phenomenon is understood. We used a combined nuclear magnetic resonance (NMR) and molecular dynamics approach to study a stable intermediate preceding hydride transfer, which is the rate-limiting and half-the-sites step. In NMR titrations with ligands leading to this intermediate, we measured chemical shifts of the apoenzyme (lig0), the saturated holoenzyme (lig2), and the typically elusive singly bound (lig1) states. Approximately 40 amides showed quartet patterns providing direct NMR evidence of coupling between the active site and probes >30 Å away in the distal subunit. Quartet peak patterns have symmetrical character, indicating reciprocity in communicating the first and second binding events to the distal protomer. Quartets include key catalytic residues and map to the dimer interface ß-sheet, which also represents the shortest path between the two active sites. Simulations corroborate the coupling observed in solution in that there is excellent overlap between quartet residues and main-chain atoms having intersubunit cross-correlated motions. Simulations identify five hot spot residues, three of which lie at the kink in the unique ß-bulge abutting the active sites on either end of the sheet. Interstrand cross-correlated motions become more organized and pronounced as the enzyme progresses from lig0 to lig1 and ultimately lig2. Coupling in the apparently symmetrical complex has implications for half-the-sites reactivity and potentially resolves the paradox of inequivalent TS active sites despite the vast majority of X-ray structures appearing to be symmetrical.


Asunto(s)
Multimerización de Proteína/fisiología , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo , Dominio Catalítico/fisiología , Conformación Proteica en Lámina beta/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
3.
J Biol Chem ; 293(6): 2015-2028, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29255089

RESUMEN

The ryanodine receptor ion channel RyR1 is present in skeletal muscle and has a large cytoplasmic N-terminal domain and smaller C-terminal pore-forming domain comprising six transmembrane helices, a pore helix, and a selectivity filter. The RyR1 S6 pore-lining helix has two conserved glycines, Gly-4934 and Gly-4941, that facilitate RyR1 channel gating by providing S6 flexibility and minimizing amino acid clashes. Here, we report that substitution of Gly-4941 with Asp or Lys results in functional channels as indicated by caffeine-induced Ca2+ release response in HEK293 cells, whereas a low response of the corresponding Gly-4934 variants suggested loss of function. Following purification, the RyR1 mutants G4934D, G4934K, and G4941D did not noticeably conduct Ca2+ in single-channel measurements. Gly-4941 replacement with Lys resulted in channels having reduced K+ conductance and reduced selectivity for Ca2+ compared with wildtype. RyR1-G4941K did not fully close at nanomolar cytosolic Ca2+ concentrations and nearly fully opened at 2 µm cytosolic or sarcoplasmic reticulum luminal Ca2+, and Ca2+- and voltage-dependent regulation of RyR1-G4941K mutant channels was demonstrated. Computational methods and single-channel recordings indicated that the open G4941K variant results in the formation of a salt bridge to Asp-4938. In contrast, wildtype RyR1 was closed and not activated by luminal Ca2+ at low cytosolic Ca2+ levels. A model suggested that luminal Ca2+ activates RyR1 by accessing a recently identified cytosolic Ca2+-binding site in the open channel as the Ca2+ ions pass through the pore.


Asunto(s)
Sustitución de Aminoácidos , Calcio/metabolismo , Citosol/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Secuencias de Aminoácidos , Cafeína/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
4.
J Biol Chem ; 293(13): 4752-4766, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382719

RESUMEN

Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr166-dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching."


Asunto(s)
Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas RGS/inmunología , Sustitución de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Mutación Missense , Fosforilación , Proteínas RGS/genética , Tirosina/genética , Tirosina/metabolismo
5.
J Biol Chem ; 292(31): 12947-12958, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28584051

RESUMEN

The type 1 ryanodine receptor (RyR1) mediates Ca2+ release from the sarcoplasmic reticulum to initiate skeletal muscle contraction and is associated with muscle diseases, malignant hyperthermia, and central core disease. To better understand RyR1 channel function, we investigated the molecular mechanisms of channel gating and ion permeation. An adequate model of channel gating requires accurate, high-resolution models of both open and closed states of the channel. To this end, we generated an open-channel RyR1 model using molecular simulations to pull Ca2+ through the pore constriction site of a closed-channel RyR1 structure determined at 3.8-Šresolution. Importantly, we find that our open-channel model is consistent with the RyR1 and cardiac RyR (RyR2) open-channel structures reported while this paper was in preparation. Both our model and the published structures show similar rotation of the upper portion of the pore-lining S6 helix away from the 4-fold channel axis and twisting of Ile-4937 at the channel constriction site out of the channel pore. These motions result in a minimum open-channel pore radius of ∼3 Šformed by Gln-4933, rather than Ile-4937 in the closed-channel structure. We also present functional support for our model by mutations around the closed- and open-channel constriction sites (Gln-4933 and Ile-4937). Our results indicate that use of ion-pulling simulations produces a RyR1 open-channel model, which can provide insights into the mechanisms of channel opening complementing those from the structural data.


Asunto(s)
Señalización del Calcio , Membrana Dobles de Lípidos/química , Modelos Moleculares , Canal Liberador de Calcio Receptor de Rianodina/química , Sustitución de Aminoácidos , Animales , Cafeína/química , Cafeína/metabolismo , Cafeína/farmacología , Agonistas de los Canales de Calcio/química , Agonistas de los Canales de Calcio/metabolismo , Agonistas de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Glutamina/química , Células HEK293 , Humanos , Isoleucina/química , Ligandos , Simulación de Dinámica Molecular , Mutación , Fragmentos de Péptidos/agonistas , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rianodina/química , Rianodina/metabolismo , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
6.
J Biol Chem ; 290(28): 17535-45, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25998124

RESUMEN

Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.


Asunto(s)
Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sustitución de Aminoácidos , Animales , Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Glicina/química , Células HEK293 , Humanos , Activación del Canal Iónico , Modelos Moleculares , Contracción Muscular , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética
7.
Biochim Biophys Acta ; 1848(1 Pt B): 307-14, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24680782

RESUMEN

Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) mediating fast neurotransmission in the central and peripheral nervous systems. They are important targets for many currently used clinical drugs, such as general anesthetics, and for allosteric modulators with potential therapeutic applications. Here, we provide an overview of advances in the use of solution NMR in structural and dynamic characterization of ion channels, particularly human Cys-loop receptors. We present challenges to overcome and realistic solutions for achieving high-resolution structural information for this family of receptors. We discuss how subtle structural differences among homologous channels define unique channel pharmacological properties and advocate the necessity to determine high-resolution structures for individual receptor subtypes. Finally, we describe drug binding to the TMDs of Cys-loop receptors identified by solution NMR and the associated dynamics changes relevant to channel functions.


Asunto(s)
Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/química , Espectroscopía de Resonancia Magnética/métodos , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular
8.
J Biol Chem ; 289(20): 13851-7, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24695730

RESUMEN

The native α7 nicotinic acetylcholine receptor (α7nAChR) is a homopentameric ligand-gated ion channel mediating fast synaptic transmission and is of pharmaceutical interest for treatment of numerous disorders. The transmembrane domain (TMD) of α7nAChR has been identified as a target for positive allosteric modulators (PAMs), but it is unclear whether modulation occurs through changes entirely within the TMD or changes involving both the TMD and the extracellular domain (ECD)-TMD interface. In this study, we constructed multiple chimeras using the TMD of human α7nAChR and the ECD of a prokaryotic homolog, ELIC, which is not sensitive to these modulators, and for which a high resolution structure has been solved. Functional ELIC-α7nAChR (EA) chimeras were obtained when their ECD-TMD interfaces were modified to resemble either the ELIC interface (EAELIC) or α7nAChR interface (EAα7). Both EAα7 and EAELIC show similar activation response and desensitization characteristics, but only EAα7 retained the unique pharmacology of α7nAChR evoked by PAMs, including potentiation by ivermectin, PNU-120596, and TQS, as well as activation by 4BP-TQS. This study suggests that PAM modulation through the TMD has a more stringent requirement at the ECD-TMD interface than agonist activation.


Asunto(s)
Membrana Celular/metabolismo , Espacio Extracelular/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética
9.
Biochim Biophys Acta ; 1838(5): 1389-95, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24384062

RESUMEN

The α7 nicotinic acetylcholine receptor (nAChR), assembled as homomeric pentameric ligand-gated ion channels, is one of the most abundant nAChR subtypes in the brain. Despite its importance in memory, learning and cognition, no structure has been determined for the α7 nAChR TM domain, a target for allosteric modulators. Using solution state NMR, we determined the structure of the human α7 nAChR TM domain (PDB ID: 2MAW) and demonstrated that the α7 TM domain formed functional channels in Xenopus oocytes. We identified the associated binding sites for the anesthetics halothane and ketamine; the former cannot sensitively inhibit α7 function, but the latter can. The α7 TM domain folds into the expected four-helical bundle motif, but the intra-subunit cavity at the extracellular end of the α7 TM domain is smaller than the equivalent cavity in the α4ß2 nAChRs (PDB IDs: 2LLY; 2LM2). Neither drug binds to the extracellular end of the α7 TM domain, but two halothane molecules or one ketamine molecule binds to the intracellular end of the α7 TM domain. Halothane and ketamine binding sites are partially overlapped. Ketamine, but not halothane, perturbed the α7 channel-gate residue L9'. Furthermore, halothane did not induce profound dynamics changes in the α7 channel as observed in α4ß2. The study offers a novel high-resolution structure for the human α7 nAChR TM domain that is invaluable for developing α7-specific therapeutics. It also provides evidence to support the hypothesis: only when anesthetic binding perturbs the channel pore or alters the channel motion, can binding generate functional consequences.


Asunto(s)
Anestésicos/química , Proteínas de la Membrana/química , Receptor Nicotínico de Acetilcolina alfa 7/química , Anestésicos/metabolismo , Animales , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Halotano/química , Halotano/metabolismo , Humanos , Ketamina/química , Ketamina/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Termodinámica , Xenopus , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
10.
Phys Rev Lett ; 115(10): 108103, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26382705

RESUMEN

Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.


Asunto(s)
Anestesia General , Estado de Conciencia/fisiología , Modelos Neurológicos , Neuronas/fisiología , Transmisión Sináptica/fisiología , Vías Aferentes/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Humanos , Red Nerviosa/fisiología , Tálamo/citología , Tálamo/fisiología
11.
J Biol Chem ; 288(50): 35793-800, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24194515

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7ß2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in ß2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified ß2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, ß2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.


Asunto(s)
Anestésicos/química , Anestésicos/farmacología , Isoflurano/química , Isoflurano/farmacología , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Secuencia de Aminoácidos , Anestésicos/metabolismo , Animales , Sitios de Unión , Membrana Celular/metabolismo , Espacio Extracelular/metabolismo , Isoflurano/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Ratas , Ratas Wistar , Receptores Nicotínicos/química , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Receptor Nicotínico de Acetilcolina alfa 7/química
12.
Biochim Biophys Acta ; 1828(2): 398-404, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23000369

RESUMEN

The α4ß2 nicotinic acetylcholine receptor (nAChR) has significant roles in nervous system function and disease. It is also a molecular target of general anesthetics. Anesthetics inhibit the α4ß2 nAChR at clinically relevant concentrations, but their binding sites in α4ß2 remain unclear. The recently determined NMR structures of the α4ß2 nAChR transmembrane (TM) domains provide valuable frameworks for identifying the binding sites. In this study, we performed solution NMR experiments on the α4ß2 TM domains in the absence and presence of halothane and ketamine. Both anesthetics were found in an intra-subunit cavity near the extracellular end of the ß2 transmembrane helices, homologous to a common anesthetic binding site observed in X-ray structures of anesthetic-bound GLIC (Nury et al., [32]). Halothane, but not ketamine, was also found in cavities adjacent to the common anesthetic site at the interface of α4 and ß2. In addition, both anesthetics bound to cavities near the ion selectivity filter at the intracellular end of the TM domains. Anesthetic binding induced profound changes in protein conformational exchanges. A number of residues, close to or remote from the binding sites, showed resonance signal splitting from single to double peaks, signifying that anesthetics decreased conformation exchange rates. It was also evident that anesthetics shifted population of two conformations. Altogether, the study comprehensively resolved anesthetic binding sites in the α4ß2 nAChR. Furthermore, the study provided compelling experimental evidence of anesthetic-induced changes in protein dynamics, especially near regions of the hydrophobic gate and ion selectivity filter that directly regulate channel functions.


Asunto(s)
Anestésicos/química , Espectroscopía de Resonancia Magnética/métodos , Receptores Nicotínicos/química , Sitio Alostérico , Sitios de Unión , Halotano/química , Humanos , Iones , Ketamina/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Rayos X
13.
Biochim Biophys Acta ; 1818(5): 1261-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22361591

RESUMEN

The α4ß2 nicotinic acetylcholine receptor (nAChR) is the predominant heteromeric subtype of nAChRs in the brain, which has been implicated in numerous neurological conditions. The structural information specifically for the α4ß2 and other neuronal nAChRs is presently limited. In this study, we determined structures of the transmembrane (TM) domains of the α4 and ß2 subunits in lauryldimethylamine-oxide (LDAO) micelles using solution NMR spectroscopy. NMR experiments and size exclusion chromatography-multi-angle light scattering (SEC-MALS) analysis demonstrated that the TM domains of α4 and ß2 interacted with each other and spontaneously formed pentameric assemblies in the LDAO micelles. The Na(+) flux assay revealed that α4ß2 formed Na(+) permeable channels in lipid vesicles. Efflux of Na(+) through the α4ß2 channels reduced intra-vesicle Sodium Green™ fluorescence in a time-dependent manner that was not observed in vesicles without incorporating α4ß2. The study provides structural insight into the TM domains of the α4ß2 nAChR. It offers a valuable structural framework for rationalizing extensive biochemical data collected previously on the α4ß2 nAChR and for designing new therapeutic modulators.


Asunto(s)
Receptores Nicotínicos/química , Dimetilaminas/química , Humanos , Transporte Iónico/fisiología , Micelas , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptores Nicotínicos/metabolismo , Sodio/química , Sodio/metabolismo
14.
Biochim Biophys Acta ; 1818(3): 617-26, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155685

RESUMEN

The nicotinic acetylcholine receptor (nAChR) is an important therapeutic target for a wide range of pathophysiological conditions, for which rational drug designs often require receptor structures at atomic resolution. Recent proof-of-concept studies demonstrated a water-solubilization approach to structure determination of membrane proteins by NMR (Slovic et al., PNAS, 101: 1828-1833, 2004; Ma et al., PNAS, 105: 16537-42, 2008). We report here the computational design and experimental characterization of WSA, a water-soluble protein with ~83% sequence identity to the transmembrane (TM) domain of the nAChR α1 subunit. Although the design was based on a low-resolution structural template, the resulting high-resolution NMR structure agrees remarkably well with the recent crystal structure of the TM domains of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), demonstrating the robustness and general applicability of the approach. NMR T(2) dispersion measurements showed that the TM2 domain of the designed protein was dynamic, undergoing conformational exchange on the NMR timescale. Photoaffinity labeling with isoflurane and propofol photolabels identified a common binding site in the immediate proximity of the anesthetic binding site found in the crystal structure of the anesthetic-GLIC complex. Our results illustrate the usefulness of high-resolution NMR analyses of water-solubilized channel proteins for the discovery of potential drug binding sites.


Asunto(s)
Simulación por Computador , Modelos Moleculares , Receptores Nicotínicos/química , Agua/química , Proteínas Bacterianas/química , Cianobacterias/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Solubilidad , Homología Estructural de Proteína
15.
J Am Chem Soc ; 135(6): 2172-80, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23339564

RESUMEN

The anesthetic propofol inhibits the currents of the homopentameric ligand-gated ion channel GLIC, yet the crystal structure of GLIC with five propofol molecules bound symmetrically shows an open-channel conformation. To address this dilemma and determine if the symmetry of propofol binding sites affects the channel conformational transition, we performed a total of 1.5 µs of molecular dynamics simulations for different GLIC systems with propofol occupancies of 0, 1, 2, 3, and 5. GLIC without propofol binding or with five propofol molecules bound symmetrically, showed similar channel conformation and hydration status over multiple replicates of 100-ns simulations. In contrast, asymmetric binding to one, two or three equivalent sites in different subunits accelerated the channel dehydration, increased the conformational heterogeneity of the pore-lining TM2 helices, and shifted the lateral and radial tilting angles of TM2 toward a closed-channel conformation. The results differentiate two groups of systems based on the propofol binding symmetry. The difference between symmetric and asymmetric groups is correlated with the variance in the propofol-binding cavity adjacent to the hydrophobic gate and the force imposed by the bound propofol. Asymmetrically bound propofol produced greater variance in the cavity size that could further elevate the conformation heterogeneity. The force trajectory generated by propofol in each subunit over the course of a simulation exhibits an ellipsoidal shape, which has the larger component tangential to the pore. Asymmetric propofol binding creates an unbalanced force that expedites the channel conformation transitions. The findings from this study not only suggest that asymmetric binding underlies the propofol functional inhibition of GLIC, but also advocate for the role of symmetry breaking in facilitating channel conformational transitions.


Asunto(s)
Canales Iónicos Activados por Ligandos/química , Sitios de Unión , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
16.
Biophys J ; 101(8): 1905-12, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22004744

RESUMEN

Pentameric ligand-gated ion channels are targets of general anesthetics. Although the search for discrete anesthetic binding sites has achieved some degree of success, little is known regarding how anesthetics work after the events of binding. Using the crystal structures of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), which is sensitive to a variety of general anesthetics, we performed multiple molecular dynamics simulations in the presence and absence of the general anesthetic isoflurane. Isoflurane bound to several locations within GLIC, including the transmembrane pocket identified crystallographically, the extracellular (EC) domain, and the interface of the EC and transmembrane domains. Isoflurane also entered the channel after the pore was dehydrated in one of the simulations. Isoflurane disrupted the quaternary structure of GLIC, as evidenced in a striking association between the binding and breakage of intersubunit salt bridges in the EC domain. The pore-lining helix experienced lateral and inward radial tilting motion that contributed to the channel closure. Isoflurane binding introduced strong anticorrelated motions between different subunits of GLIC. The demonstrated structural and dynamical modulations by isoflurane aid in the understanding of the underlying mechanism of anesthetic inhibition of GLIC and possibly other homologous pentameric ligand-gated ion channels.


Asunto(s)
Anestésicos Generales/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Isoflurano/farmacología , Simulación de Dinámica Molecular , Anestésicos Generales/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Cianobacterias , Relación Dosis-Respuesta a Droga , Activación del Canal Iónico/efectos de los fármacos , Isoflurano/metabolismo , Movimiento/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína/efectos de los fármacos
17.
Methods Mol Biol ; 1529: 227-241, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27914054

RESUMEN

Computational grafting of target residues onto existing protein scaffolds is a powerful method for the design of proteins with novel function. In the grafting method side chain mutations are introduced into a preexisting protein scaffold to recreate a target functional motif. The success of this approach relies on two primary criteria: (1) the availability of compatible structural scaffolds, and (2) the introduction of mutations that do not affect the protein structure or stability. To identify compatible structural motifs we use the Erebus webserver, to search the protein data bank (PDB) for user-defined structural scaffolds. To identify potential design mutations we use the Eris webserver, which accurately predicts changes in protein stability resulting from mutations. Mutations that increase the protein stability are more likely to maintain the protein structure and therefore produce the desired function. Together these tools provide effective methods for identifying existing templates and guiding further design experiments. The software tools for scaffold searching and design are available at http://dokhlab.org .


Asunto(s)
Biología Computacional/métodos , Ingeniería de Proteínas/métodos , Proteínas , Bases de Datos de Proteínas , Modelos Moleculares , Mutación , Conformación Proteica , Estabilidad Proteica , Proteínas/química , Proteínas/genética , Programas Informáticos , Navegador Web
18.
J Med Chem ; 58(7): 2958-2966, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25790278

RESUMEN

The human glycine receptors (hGlyRs) are chloride-selective ion channels that mediate inhibitory neurotransmission in the brain stem and spinal cord. They are also targets for compounds of potential use in analgesic therapies. Here, we develop a strategy to discover analgesic drugs via structure-based virtual screening based on the recently published NMR structure of the hGlyR-α1 transmembrane domain (PDB ID: 2M6I ) and the critical role of residue S296 in hGlyR-α1 potentiation by Δ(9)-tetrahydrocannabinol (THC). We screened 1549 FDA-approved drugs in the DrugBank database on an ensemble of 180 hGlyR-α1 structures generated from molecular dynamics simulations of the NMR structure of the hGlyR-α1 transmembrane domain in different lipid environments. Thirteen hit compounds from the screening were selected for functional validation in Xenopus laevis oocytes expressing hGlyR-α1. Only one compound showed no potentiation effects; seven potentiated hGlyR-α1 at a level greater than THC at 1 µM. Our virtual screening protocol is generally applicable to drug targets with lipid-facing binding sites.


Asunto(s)
Analgésicos no Narcóticos/química , Analgésicos no Narcóticos/farmacología , Cannabinoides/química , Evaluación Preclínica de Medicamentos/métodos , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animales , Sitios de Unión , Femenino , Lípidos/química , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Resonancia Magnética Nuclear Biomolecular , Oocitos/efectos de los fármacos , Dolor/tratamiento farmacológico , Conformación Proteica , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Xenopus laevis
19.
Structure ; 23(6): 995-1004, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25960405

RESUMEN

Structural rearrangements underlying functional transitions of pentameric ligand-gated ion channels (pLGICs) are not fully understood. Using (19)F nuclear magnetic resonance and electron spin resonance spectroscopy, we found that ELIC, a pLGIC from Erwinia chrysanthemi, expanded the extracellular end and contracted the intracellular end of its pore during transition from the resting to an apparent desensitized state. Importantly, the contraction at the intracellular end of the pore likely forms a gate to restrict ion transport in the desensitized state. This gate differs from the hydrophobic gate present in the resting state. Conformational changes of the TM2-TM3 loop were limited to the N-terminal end. The TM4 helices and the TM3-TM4 loop appeared relatively insensitive to agonist-mediated structural rearrangement. These results indicate that conformational changes accompanying functional transitions are not uniform among different ELIC regions. This work also revealed the co-existence of multiple conformations for a given state and suggested asymmetric conformational arrangements in a homomeric pLGIC.


Asunto(s)
Dickeya chrysanthemi/química , Canales Iónicos Activados por Ligandos/química , Modelos Moleculares , Espectroscopía de Resonancia por Spin del Electrón , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
20.
PLoS One ; 8(5): e64326, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667707

RESUMEN

The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the ß1-ß2 loop or through pre-TM1. The ß1-ß2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs.


Asunto(s)
Cianobacterias/metabolismo , Canales Iónicos Activados por Ligandos/fisiología , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Transducción de Señal/fisiología , Regulación Alostérica/fisiología , Secuencia de Bases , Cristalografía , Cianobacterias/genética , Canales Iónicos Activados por Ligandos/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Missense/genética , Técnicas de Placa-Clamp , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA