Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Hum Genet ; 109(9): 1605-1619, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007526

RESUMEN

Newborn screening (NBS) dramatically improves outcomes in severe childhood disorders by treatment before symptom onset. In many genetic diseases, however, outcomes remain poor because NBS has lagged behind drug development. Rapid whole-genome sequencing (rWGS) is attractive for comprehensive NBS because it concomitantly examines almost all genetic diseases and is gaining acceptance for genetic disease diagnosis in ill newborns. We describe prototypic methods for scalable, parentally consented, feedback-informed NBS and diagnosis of genetic diseases by rWGS and virtual, acute management guidance (NBS-rWGS). Using established criteria and the Delphi method, we reviewed 457 genetic diseases for NBS-rWGS, retaining 388 (85%) with effective treatments. Simulated NBS-rWGS in 454,707 UK Biobank subjects with 29,865 pathogenic or likely pathogenic variants associated with 388 disorders had a true negative rate (specificity) of 99.7% following root cause analysis. In 2,208 critically ill children with suspected genetic disorders and 2,168 of their parents, simulated NBS-rWGS for 388 disorders identified 104 (87%) of 119 diagnoses previously made by rWGS and 15 findings not previously reported (NBS-rWGS negative predictive value 99.6%, true positive rate [sensitivity] 88.8%). Retrospective NBS-rWGS diagnosed 15 children with disorders that had been undetected by conventional NBS. In 43 of the 104 children, had NBS-rWGS-based interventions been started on day of life 5, the Delphi consensus was that symptoms could have been avoided completely in seven critically ill children, mostly in 21, and partially in 13. We invite groups worldwide to refine these NBS-rWGS conditions and join us to prospectively examine clinical utility and cost effectiveness.


Asunto(s)
Tamizaje Neonatal , Medicina de Precisión , Niño , Enfermedad Crítica , Pruebas Genéticas/métodos , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Estudios Retrospectivos
2.
Am J Med Genet A ; : e63781, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884565

RESUMEN

Hypophosphatasia (HPP) is a rare, inherited metabolic disease characterized by low tissue-nonspecific alkaline phosphatase activity due to ALPL gene variants. We describe ALPL variants from the observational, prospective, multinational Global HPP Registry. Inclusion in the analysis required a diagnosis of HPP, low serum ALP activity, and ≥1 ALPL variant. Of 1176 patients enrolled as of September 2022, 814 met inclusion criteria in Europe (48.9%), North America (36.7%), Japan (10.2%), Australia (2.6%), and elsewhere (1.6%). Most patients (74.7%) had 1 ALPL variant; 25.3% had ≥2 variants. Nearly all patients (95.6%) had known disease-causing variants; 4.4% had variants of uncertain significance. Disease-causing variants were predominantly missense (770/1556 alleles). The most common variants were c.571G>A (102/1628 alleles), c.1250A>G (66/1628 alleles), and c.1559del (61/1628 alleles). Variant profiles were generally consistent, except in Japan, where a higher proportion of patients (68.7%) had ≥2 ALPL variants, likely because more had disease onset before age 6 months (53.0% vs. 10.1%-23.1% elsewhere). Frameshift mutations (61/164 alleles) and inframe deletions (7/164 alleles) were more common in Japan. Twenty-three novel variants were discovered, each in a single geographic region, predominantly Europe. Analyses confirmed previously known ALPL variants, identified novel variants, and characterized geographic variation in frequency and type of ALPL variants in a large population.

4.
Molecules ; 24(10)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100979

RESUMEN

In this work we summarize our understanding of melanocortin 4 receptor (MC4R) pathway activation, aiming to define a safe and effective therapeutic targeting strategy for the MC4R. Delineation of cellular MC4R pathways has provided evidence for distinct MC4R signaling events characterized by unique receptor activation kinetics. While these studies remain narrow in scope, and have largely been explored with peptidic agonists, the results provide a possible correlation between distinct ligand groups and differential MC4R activation kinetics. In addition, when a set of small-molecule and peptide MC4R agonists are compared, evidence of biased signaling has been reported. The results of such mechanistic studies are discussed.


Asunto(s)
Péptidos/farmacocinética , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal , Animales , Peso Corporal , Sistema Cardiovascular/efectos de los fármacos , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Cinética , Ligandos , Péptidos/química , Péptidos/farmacología , Primates , Unión Proteica , Transporte de Proteínas , Roedores , Transducción de Señal/efectos de los fármacos , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
5.
J Neurosci ; 34(5): 1579-91, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24478342

RESUMEN

Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology.


Asunto(s)
Caenorhabditis elegans/fisiología , Locomoción/fisiología , Caracteres Sexuales , Animales , Animales Modificados Genéticamente , Fenómenos Biomecánicos , Tamaño Corporal/fisiología , Proteínas de Caenorhabditis elegans/genética , Agonistas Colinérgicos/farmacología , Femenino , Levamisol/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Modelos Biológicos , Actividad Motora/fisiología , Músculos/efectos de los fármacos , Músculos/fisiología , Sistema Nervioso/citología , Neuronas/clasificación , Neuronas/efectos de los fármacos , Neuronas/fisiología , Estimulación Física , Propiocepción/efectos de los fármacos , Propiocepción/genética , Diferenciación Sexual
6.
Biol Sex Differ ; 3: 8, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22436578

RESUMEN

Animals prioritize behaviors according to their physiological needs and reproductive goals, selecting a single behavioral strategy from a repertoire of possible responses to any given stimulus. Biological sex influences this decision-making process in significant ways, differentiating the responses animals choose when faced with stimuli ranging from food to conspecifics. We review here recent work in invertebrate models, including C. elegans, Drosophila, and a variety of insects, mollusks and crustaceans, that has begun to offer intriguing insights into the neural mechanisms underlying the sexual modulation of behavioral decision-making. These findings show that an animal's sex can modulate neural function in surprisingly diverse ways, much like internal physiological variables such as hunger or thirst. In the context of homeostatic behaviors such as feeding, an animal's sex and nutritional status may converge on a common physiological mechanism, the functional modulation of shared sensory circuitry, to influence decision-making. Similarly, considerable evidence suggests that decisions on whether to mate or fight with conspecifics are also mediated through sex-specific neuromodulatory control of nominally shared neural circuits. This work offers a new perspective on how sex differences in behavior emerge, in which the regulated function of shared neural circuitry plays a crucial role. Emerging evidence from vertebrates indicates that this paradigm is likely to extend to more complex nervous systems as well. As men and women differ in their susceptibility to a variety of neuropsychiatric disorders affecting shared behaviors, these findings may ultimately have important implications for human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA