Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 30(6): 10050-10062, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299415

RESUMEN

We investigate the influence of various optical fiber fabrication processes on the fluorescence decay of RE ions commonly used in fiber lasers and amplifiers, i.e. Yb3+, Tm3+ and Ho3+. Optical fiber preforms were prepared using the MCVD method combined with Al2O3 nanoparticle doping and subjected to subsequent heat treatment processes such as preform elongation and fiber drawing. The fluorescence decay of RE ions was measured in multiple stages of optical fiber preparation: in an original preform, in an elongated preform (cane), in a standard fiber, and in an overcladded fiber. It was found that heat treatment processing of the preforms generally leads to a faster fluorescence decay, which can be explained by the diffusion of dopants and clustering of RE ions. The fiber drawing exhibited a greater effect compared to preform elongation, which was ascribed to a faster cooling rate of the process. In general, the heat treatment of RE-doped silica glass preforms leads to the decline of fluorescence decay.

2.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232924

RESUMEN

Helicobacter pylori uses a cluster of polar, sheathed flagella for swimming motility. A search for homologs of H. pylori proteins that were conserved in Helicobacter species that possess flagellar sheaths but were underrepresented in Helicobacter species with unsheathed flagella identified several candidate proteins. Four of the identified proteins are predicted to form part of a tripartite efflux system that includes two transmembrane domains of an ABC transporter (HP1487 and HP1486), a periplasmic membrane fusion protein (HP1488), and a TolC-like outer membrane efflux protein (HP1489). Deleting hp1486/hp1487 and hp1489 homologs in H. pylori B128 resulted in reductions in motility and the number of flagella per cell. Cryo-electron tomography studies of intact motors of the Δhp1489 and Δhp1486/hp1487 mutants revealed many of the cells contained a potential flagellum disassembly product consisting of decorated L and P rings, which has been reported in other bacteria. Aberrant motors lacking specific components, including a cage-like structure that surrounds the motor, were also observed in the Δhp1489 mutant. These findings suggest a role for the H. pylori HP1486-HP1489 tripartite efflux system in flagellum stability. Three independent variants of the Δhp1486/hp1487 mutant with enhanced motility were isolated. All three motile variants had the same frameshift mutation in fliL, suggesting a role for FliL in flagellum disassembly.


Asunto(s)
Helicobacter pylori , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Helicobacter pylori/metabolismo , Proteínas de la Fusión de la Membrana/análisis , Proteínas de la Fusión de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo
3.
Sensors (Basel) ; 21(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34372310

RESUMEN

A practical demonstration of pH measurement in real biological samples with an in-house developed fiber-optic pH sensor system is presented. The sensor uses 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) fluorescent dye as the opto-chemical transducer. The dye is immobilized in a hybrid sol-gel matrix at the tip of a tapered optical fiber. We used 405 nm and 450 nm laser diodes for the dye excitation and a photomultiplier tube as a detector. The sensor was used for the measurement of pH in human aqueous humor samples during cataract surgery. Two groups of patients were tested, one underwent conventional phacoemulsification removal of the lens while the other was subjected to femtosecond laser assisted cataract surgery (FLACS). The precision of the measurement was ±0.04 pH units. The average pH of the aqueous humor of patients subjected to FLACS and those subjected to phacoemulsification were 7.24 ± 0.17 and 7.31 ± 0.20 respectively.


Asunto(s)
Terapia por Láser , Facoemulsificación , Humor Acuoso , Humanos , Concentración de Iones de Hidrógeno , Estudios Prospectivos
4.
BMC Evol Biol ; 19(1): 67, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823869

RESUMEN

BACKGROUND: Interactions between transcription factors and their specific binding sites are a key component of regulation of gene expression. Until recently, it was generally assumed that most bacterial transcription factor binding sites are located at or near promoters. However, several recent works utilizing high-throughput technology to detect transcription factor binding sites in bacterial genomes found a large number of binding sites in unexpected locations, particularly inside genes, as opposed to known or expected promoter regions. While some of these intragenic binding sites likely have regulatory functions, an alternative scenario is that many of these binding sites arise by chance in the absence of selective constraints. The latter possibility was supported by in silico simulations for σ54 binding sites in Salmonella. RESULTS: In this work, we extend these simulations to more than forty transcription factors from E. coli and other bacteria. The results suggest that binding sites for all analyzed transcription factors are likely to arise throughout the genome by random genetic drift and many transcription factor binding sites found in genomes may not have specific regulatory functions. In addition, when comparing observed and expected patterns of occurrence of binding sites in genomes, we observed distinct differences among different transcription factors. CONCLUSIONS: We speculate that transcription factor binding sites randomly occurring throughout the genome could be beneficial in promoting emergence of new regulatory interactions and thus facilitating evolution of gene regulatory networks.


Asunto(s)
Sitios de Unión , Evolución Molecular , Redes Reguladoras de Genes/genética , Genoma Bacteriano , Simulación por Computador , Escherichia coli/genética , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética
5.
Bioconjug Chem ; 30(8): 2216-2227, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31265254

RESUMEN

"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1.


Asunto(s)
Antirretrovirales/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Infecciones por VIH/tratamiento farmacológico , Nanopartículas/uso terapéutico , Antirretrovirales/química , Células Cultivadas , Citoplasma/metabolismo , Liberación de Fármacos , Infecciones por VIH/prevención & control , VIH-1 , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , Nanopartículas/química , Nanopartículas/metabolismo , Ribonucleoproteínas
6.
J Bacteriol ; 200(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30201777

RESUMEN

The σ54 regulon in Salmonella enterica serovar Typhimurium includes a predicted RNA repair operon encoding homologs of the metazoan Ro60 protein (Rsr), Y RNAs (YrlBA), RNA ligase (RtcB), and RNA 3'-phosphate cyclase (RtcA). Transcription from σ54-dependent promoters requires that a cognate bacterial enhancer binding protein (bEBP) be activated by a specific environmental or cellular signal; the cognate bEBP for the σ54-dependent promoter of the rsr-yrlBA-rtcBA operon is RtcR. To identify conditions that generate the signal for RtcR activation in S Typhimurium, transcription of the RNA repair operon was assayed under multiple stress conditions that result in nucleic acid damage. RtcR-dependent transcription was highly induced by the nucleic acid cross-linking agents mitomycin C (MMC) and cisplatin, and this activation was dependent on RecA. Deletion of rtcR or rtcB resulted in decreased cell viability relative to that of the wild type following treatment with MMC. Oxidative stress from peroxide exposure also induced RtcR-dependent transcription of the operon. Nitrogen limitation resulted in RtcR-independent increased expression of the operon; the effect of nitrogen limitation required NtrC. The adjacent toxin-antitoxin module, dinJ-yafQ, was cotranscribed with the RNA repair operon but was not required for RtcR activation, although YafQ endoribonuclease activated RtcR-dependent transcription. Stress conditions shown to induce expression the RNA repair operon of Escherichia coli (rtcBA) did not stimulate expression of the S Typhimurium RNA repair operon. Similarly, MMC did not induce expression of the E. colirtcBA operon, although when expressed in S Typhimurium, E. coli RtcR responds effectively to the unknown signal(s) generated there by MMC exposure.IMPORTANCE Homologs of the metazoan RNA repair enzymes RtcB and RtcA occur widely in eubacteria, suggesting a selective advantage. Although the enzymatic activities of the eubacterial RtcB and RtcA have been well characterized, the physiological roles remain largely unresolved. Here we report stress responses that activate expression of the σ54-dependent RNA repair operon (rsr-yrlBA-rtcBA) of S Typhimurium and demonstrate that expression of the operon impacts cell survival under MMC-induced stress. Characterization of the requirements for activation of this tightly regulated operon provides clues to the possible functions of operon components in vivo, enhancing our understanding of how this human pathogen copes with environmental stressors.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Operón/genética , ARN Polimerasa Sigma 54/genética , Regulón/genética , Salmonella typhimurium/genética , Estrés Fisiológico , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN , Proteínas de Unión al ADN/genética , Ligasas/genética , Mitomicina/farmacología , Estrés Oxidativo , Regiones Promotoras Genéticas/genética , Respuesta SOS en Genética , Salmonella typhimurium/enzimología , Salmonella typhimurium/fisiología , Factores de Transcripción/genética
7.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29752265

RESUMEN

Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal "on" expression when PhoB is active, minimal background in the "off" state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri, enabling us to identify bases at particular randomized positions that significantly correlated with high-level "on" or low-level "off" expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 µM. During symbiotic colonization of its host squid, Euprymna scolopes, the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering.IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the "on" and "off" states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri This promoter design strategy will facilitate the engineering of other regulator-specific reporters.


Asunto(s)
Aliivibrio fischeri/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Aliivibrio/genética , Aliivibrio fischeri/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Decapodiformes/microbiología , Escherichia coli/genética , Photobacterium/genética , Salmonella enterica/genética , Análisis de Secuencia , Simbiosis , Biología Sintética
8.
J Bacteriol ; 199(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28373272

RESUMEN

The variable sigma (σ) subunit of the bacterial RNA polymerase (RNAP) holoenzyme, which is responsible for promoter specificity and open complex formation, plays a strategic role in the response to environmental changes. Salmonella enterica serovar Typhimurium utilizes the housekeeping σ70 and five alternative sigma factors, including σ54 The σ54-RNAP differs from other σ-RNAP holoenzymes in that it forms a stable closed complex with the promoter and requires ATP hydrolysis by an activated cognate bacterial enhancer binding protein (bEBP) to transition to an open complex and initiate transcription. In S. Typhimurium, σ54-dependent promoters normally respond to one of 13 different bEBPs, each of which is activated under a specific growth condition. Here, we utilized a constitutively active, promiscuous bEBP to perform a genome-wide identification of σ54-RNAP DNA binding sites and the transcriptome of the σ54 regulon of S. Typhimurium. The position and context of many of the identified σ54 RNAP DNA binding sites suggest regulatory roles for σ54-RNAP that connect the σ54 regulon to regulons of other σ factors to provide a dynamic response to rapidly changing environmental conditions.IMPORTANCE The alternative sigma factor σ54 (RpoN) is required for expression of genes involved in processes with significance in agriculture, bioenergy production, bioremediation, and host-microbe interactions. The characterization of the σ54 regulon of the versatile pathogen S. Typhimurium has expanded our understanding of the scope of the σ54 regulon and how it links to other σ regulons within the complex regulatory network for gene expression in bacteria.


Asunto(s)
ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Polimerasa Sigma 54/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Sitios de Unión , Perfilación de la Expresión Génica , Unión Proteica , Regulón
9.
BMC Genomics ; 18(1): 27, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28056763

RESUMEN

BACKGROUND: DNA sequences contain repetitive motifs which have various functions in the physiology of the organism. A number of methods have been developed for discovery of such sequence motifs with a primary focus on detection of regulatory motifs and particularly transcription factor binding sites. Most motif-finding methods apply probabilistic models to detect motifs characterized by unusually high number of copies of the motif in the analyzed sequences. RESULTS: We present a novel method for detection of pairs of motifs separated by spacers of variable nucleotide sequence but conserved length. Unlike existing methods for motif discovery, the motifs themselves are not required to occur at unusually high frequency but only to exhibit a significant preference to occur at a specific distance from each other. In the present implementation of the method, motifs are represented by pentamers and all pairs of pentamers are evaluated for statistically significant preference for a specific distance. An important step of the algorithm eliminates motif pairs where the spacers separating the two motifs exhibit a high degree of sequence similarity; such motif pairs likely arise from duplications of the whole segment including the motifs and the spacer rather than due to selective constraints indicative of a functional importance of the motif pair. The method was used to scan 569 complete prokaryotic genomes for novel sequence motifs. Some motifs detected were previously known but other motifs found in the search appear to be novel. Selected motif pairs were subjected to further investigation and in some cases their possible biological functions were proposed. CONCLUSIONS: We present a new motif-finding technique that is applicable to scanning complete genomes for sequence motifs. The results from analysis of 569 genomes suggest that the method detects previously known motifs that are expected to be found as well as new motifs that are unlikely to be discovered by traditional motif-finding methods. We conclude that our approach to detection of significant motif pairs can complement existing motif-finding techniques in discovery of novel functional sequence motifs in complete genomes.


Asunto(s)
Genoma , Genómica/métodos , Modelos Genéticos , Motivos de Nucleótidos , Células Procariotas/metabolismo , Algoritmos , Secuencias de Aminoácidos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma Arqueal , Genoma Bacteriano , Posición Específica de Matrices de Puntuación , ARN de Transferencia/química , ARN de Transferencia/genética , Terminación de la Transcripción Genética , Proteínas de Unión al GTP rho/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(12): 4726-31, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487778

RESUMEN

A comprehensive whole-genome analysis of gene function by transposon mutagenesis and deep sequencing methodology has been implemented successfully in a representative of the Archaea domain. Libraries of transposon mutants were generated for the hydrogenotrophic, methanogenic archaeon Methanococcus maripaludis S2 using a derivative of the Tn5 transposon. About 89,000 unique insertions were mapped to the genome, which allowed for the classification of 526 genes or about 30% of the genome as possibly essential or strongly advantageous for growth in rich medium. Many of these genes were homologous to eukaryotic genes that encode fundamental processes in replication, transcription, and translation, providing direct evidence for their importance in Archaea. Some genes classified as possibly essential were unique to the archaeal or methanococcal lineages, such as that encoding DNA polymerase PolD. In contrast, the archaeal homolog to the gene encoding DNA polymerase B was not essential for growth, a conclusion confirmed by construction of an independent deletion mutation. Thus PolD, and not PolB, likely plays a fundamental role in DNA replication in methanococci. Similarly, 121 hypothetical ORFs were classified as possibly essential and likely play fundamental roles in methanococcal information processing or metabolism that are not established outside this group of prokaryotes.


Asunto(s)
Genes Arqueales/fisiología , Methanococcus/genética , Sistemas de Lectura Abierta/fisiología , Elementos Transponibles de ADN , Estudio de Asociación del Genoma Completo , Mutación , Filogenia
11.
J Bacteriol ; 195(18): 4057-66, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23836865

RESUMEN

Salmonella enterica is a globally significant bacterial food-borne pathogen that utilizes a variety of carbon sources. We report here that Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) uses d-glucosaminate (2-amino-2-deoxy-d-gluconic acid) as a carbon and nitrogen source via a previously uncharacterized mannose family phosphotransferase system (PTS) permease, and we designate the genes encoding the permease dgaABCD (d-glucosaminate PTS permease components EIIA, EIIB, EIIC, and EIID). Two other genes in the dga operon (dgaE and dgaF) were required for wild-type growth of S. Typhimurium with d-glucosaminate. Transcription of dgaABCDEF was dependent on RpoN (σ(54)) and an RpoN-dependent activator gene we designate dgaR. Introduction of a plasmid bearing dgaABCDEF under the control of the lac promoter into Escherichia coli strains DH5α, BL21, and JM101 allowed these strains to grow on minimal medium containing d-glucosaminate as the sole carbon and nitrogen source. Biochemical and genetic data support a catabolic pathway in which d-glucosaminate, as it is transported across the cell membrane, is phosphorylated at the C-6 position by DgaABCD. DgaE converts the resulting d-glucosaminate-6-phosphate to 2-keto-3-deoxygluconate 6-phosphate (KDGP), which is subsequently cleaved by the aldolase DgaF to form glyceraldehyde-3-phosphate and pyruvate. DgaF catalyzes the same reaction as that catalyzed by Eda, a KDGP aldolase in the Entner-Doudoroff pathway, and the two enzymes can substitute for each other in their respective pathways. Examination of the Integrated Microbial Genomes database revealed that orthologs of the dga genes are largely restricted to certain enteric bacteria and a few species in the phylum Firmicutes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosamina/análogos & derivados , Proteínas de Transporte de Membrana/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Salmonella typhimurium/enzimología , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Medios de Cultivo , Regulación Bacteriana de la Expresión Génica , Gluconatos/metabolismo , Glucosamina/metabolismo , Manosa/metabolismo , Proteínas de Transporte de Membrana/genética , Operón , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosforilación , Salmonella typhimurium/genética
12.
BMC Genomics ; 14: 602, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24007446

RESUMEN

BACKGROUND: Sigma54, or RpoN, is an alternative σ factor found widely in eubacteria. A significant complication in analysis of the global σ54 regulon in a bacterium is that the σ54 RNA polymerase holoenzyme requires interaction with an active bacterial enhancer-binding protein (bEBP) to initiate transcription at a σ54-dependent promoter. Many bacteria possess multiple bEBPs, which are activated by diverse environmental stimuli. In this work, we assess the ability of a promiscuous, constitutively-active bEBP-the AAA+ ATPase domain of DctD from Sinorhizobium meliloti-to activate transcription from all σ54-dependent promoters for the characterization of the σ54 regulon of Salmonella Typhimurium LT2. RESULTS: The AAA+ ATPase domain of DctD was able to drive transcription from nearly all previously characterized or predicted σ54-dependent promoters in Salmonella under a single condition. These promoters are controlled by a variety of native activators and, under the condition tested, are not transcribed in the absence of the DctD AAA+ ATPase domain. We also identified a novel σ54-dependent promoter upstream of STM2939, a homolog of the cas1 component of a CRISPR system. ChIP-chip analysis revealed at least 70 σ54 binding sites in the chromosome, of which 58% are located within coding sequences. Promoter-lacZ fusions with selected intragenic σ54 binding sites suggest that many of these sites are capable of functioning as σ54-dependent promoters. CONCLUSION: Since the DctD AAA + ATPase domain proved effective in activating transcription from the diverse σ54-dependent promoters of the S. Typhimurium LT2 σ54 regulon under a single growth condition, this approach is likely to be valuable for examining σ54 regulons in other bacterial species. The S. Typhimurium σ54 regulon included a high number of intragenic σ54 binding sites/promoters, suggesting that σ54 may have multiple regulatory roles beyond the initiation of transcription at the start of an operon.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , ARN Polimerasa Sigma 54/genética , Regulón , Salmonella typhimurium/genética , Activación Transcripcional , Sitios de Unión/genética , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Operón , Regiones Promotoras Genéticas
13.
BMC Genomics ; 13: 188, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22587570

RESUMEN

BACKGROUND: Periodic spacing of A-tracts (short runs of A or T) with the DNA helical period of ~10-11 bp is characteristic of intrinsically bent DNA. In eukaryotes, the DNA bending is related to chromatin structure and nucleosome positioning. However, the physiological role of strong sequence periodicity detected in many prokaryotic genomes is not clear. RESULTS: We developed measures of intensity and persistency of DNA curvature-related sequence periodicity and applied them to prokaryotic chromosomes and phages. The results indicate that strong periodic signals present in chromosomes are generally absent in phage genomes. Moreover, chromosomes containing prophages are less likely to possess a persistent periodic signal than chromosomes with no prophages. CONCLUSIONS: Absence of DNA curvature-related sequence periodicity in phages could arise from constraints associated with DNA packaging in the viral capsid. Lack of prophages in chromosomes with persistent periodic signal suggests that the sequence periodicity and concomitant DNA curvature could play a role in protecting the chromosomes from integration of phage DNA.


Asunto(s)
Cromosomas Bacterianos/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Conformación de Ácido Nucleico , Células Procariotas/metabolismo , Profagos/genética , Bacterias/genética , Bacterias/virología , Secuencia de Bases , Integración Viral/genética
14.
Brief Bioinform ; 10(5): 525-36, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19553402

RESUMEN

Finding significant nucleotide sequence motifs in prokaryotic genomes can be divided into three types of tasks: (1) supervised motif finding, where a sample of motif sequences is used to find other similar sequences in genomes; (2) unsupervised motif finding, which typically relates to the task of finding regulatory motifs and protein binding sites and (3) exploratory motif finding, which aims to identify potential functionally significant sequence motifs as those that are unusual in some statistical sense. This article provides a conceptual overview for each type of task, a brief description of basic algorithms used in their solution, and a review of selected relevant software available online.


Asunto(s)
Secuencia de Bases , Genoma , Células Procariotas , Análisis de Secuencia de ADN/métodos , Algoritmos , Sitios de Unión/genética , Bases de Datos Genéticas , Modelos Estadísticos , Datos de Secuencia Molecular , Filogenia , Programas Informáticos
15.
PLoS Pathog ; 5(8): e1000547, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19680535

RESUMEN

Small nucleolar RNAs (snoRNAs) are localized within the nucleolus, a sub-nuclear compartment, in which they guide ribosomal or spliceosomal RNA modifications, respectively. Up until now, snoRNAs have only been identified in eukaryal and archaeal genomes, but are notably absent in bacteria. By screening B lymphocytes for expression of non-coding RNAs (ncRNAs) induced by the Epstein-Barr virus (EBV), we here report, for the first time, the identification of a snoRNA gene within a viral genome, designated as v-snoRNA1. This genetic element displays all hallmark sequence motifs of a canonical C/D box snoRNA, namely C/C'- as well as D/D'-boxes. The nucleolar localization of v-snoRNA1 was verified by in situ hybridisation of EBV-infected cells. We also confirmed binding of the three canonical snoRNA proteins, fibrillarin, Nop56 and Nop58, to v-snoRNA1. The C-box motif of v-snoRNA1 was shown to be crucial for the stability of the viral snoRNA; its selective deletion in the viral genome led to a complete down-regulation of v-snoRNA1 expression levels within EBV-infected B cells. We further provide evidence that v-snoRNA1 might serve as a miRNA-like precursor, which is processed into 24 nt sized RNA species, designated as v-snoRNA1(24pp). A potential target site of v-snoRNA1(24pp) was identified within the 3'-UTR of BALF5 mRNA which encodes the viral DNA polymerase. V-snoRNA1 was found to be expressed in all investigated EBV-positive cell lines, including lymphoblastoid cell lines (LCL). Interestingly, induction of the lytic cycle markedly up-regulated expression levels of v-snoRNA1 up to 30-fold. By a computational approach, we identified a v-snoRNA1 homolog in the rhesus lymphocryptovirus genome. This evolutionary conservation suggests an important role of v-snoRNA1 during gamma-herpesvirus infection.


Asunto(s)
Regulación Viral de la Expresión Génica , Genoma Viral , Herpesvirus Humano 4/genética , ARN Nucleolar Pequeño/genética , Animales , Linfocitos B/virología , Secuencia de Bases , Línea Celular Tumoral , Humanos , Hibridación Fluorescente in Situ , Macaca mulatta , Datos de Secuencia Molecular , ARN Viral/genética
16.
Microorganisms ; 9(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34946076

RESUMEN

DNA methylomes of Helicobacter pylori strains are complex due to the large number of DNA methyltransferases (MTases) they possess. H. pylori J99 M.Hpy99III is a 5-methylcytosine (m5C) MTase that converts GCGC motifs to Gm5CGC. Homologs of M.Hpy99III are found in essentially all H. pylori strains. Most of these homologs are orphan MTases that lack a cognate restriction endonuclease, and their retention in H. pylori strains suggest they have roles in gene regulation. To address this hypothesis, green fluorescent protein (GFP) reporter genes were constructed with six putative promoters that had a GCGC motif in the extended -10 region, and the expression of the reporter genes was compared in wild-type H. pylori G27 and a mutant lacking the M.Hpy99III homolog (M.HpyGIII). The expression of three of the GFP reporter genes was decreased significantly in the mutant lacking M.HpyGIII. In addition, the growth rate of the H. pylori G27 mutant lacking M.HpyGIII was reduced markedly compared to that of the wild type. These findings suggest that the methylation of the GCGC motif in many H. pylori GCGC-containing promoters is required for the robust expression of genes controlled by these promoters, which may account for the universal retention of M.Hpy99III homologs in H. pylori strains.

17.
J Bacteriol ; 192(14): 3763-72, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20494989

RESUMEN

Regular spacing of short runs of A or T nucleotides in DNA sequences with a period close to the helical period of the DNA double helix has been associated with intrinsic DNA bending and nucleosome positioning in eukaryotes. Analogous periodic signals were also observed in prokaryotic genomes. While the exact role of this periodicity in prokaryotes is not known, it has been proposed to facilitate the DNA packaging in the prokaryotic nucleoid and/or to promote negative or positive supercoiling. We developed a methodology for assessments of intragenomic heterogeneity of these periodic patterns and applied it in analysis of 1,025 prokaryotic chromosomes. This technique allows more detailed analysis of sequence periodicity than previous methods where sequence periodicity was assessed in an integral form across the whole chromosome. We found that most genomes have the periodic signal confined to several chromosomal segments while most of the chromosome lacks a strong sequence periodicity. Moreover, there are significant differences among different prokaryotes in both the intensity and persistency of sequence periodicity related to DNA curvature. We proffer that the prokaryotic nucleoid consists of relatively rigid sections stabilized by short intrinsically bent DNA segments and characterized by locally strong periodic patterns alternating with regions featuring a weak periodic signal, which presumably permits higher structural flexibility. This model applies to most bacteria and archaea. In genomes with an exceptionally persistent periodic signal, highly expressed genes tend to concentrate in aperiodic sections, suggesting that structural heterogeneity of the nucleoid is related to local differences in transcriptional activity.


Asunto(s)
Archaea/genética , Bacterias/genética , Genoma Arqueal/genética , Genoma Bacteriano , Células Procariotas/metabolismo , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica
18.
Mol Biol Evol ; 26(5): 1163-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19233962

RESUMEN

The concept of genome signature allows sequence comparisons without alignment. It relies on the premise that oligonucleotide compositions of DNA segments from the same or closely related genomes tend to be more similar than those from distantly related genomes. This concept has been used in detection of lateral gene transfer, phylogenetic classification of metagenome sequences (binning), and in studies of evolution of viruses and plasmids. The goal of this work is to explore limitations of genome signature in phylogenetic classification of DNA sequences and to identify formal representations of genome signature that expose best the phylogenetic relationships among prokaryotes. We found that genome signatures that best represent phylogenetic relationships are those normalized to factor out differences in G + C content and utilizing the standard A-C-G-T alphabet or the degenerate R-Y (purine-pyrimidine) alphabet. The main limitation of all genome signature representations tested is lack of divergence among some distantly related species. "Crowding" of the genome signature space and absence of molecular clock likely contribute to this phenomenon. We introduce "periodicity signatures"--formal representations of periodic sequence patterns related to DNA curvature--which can discriminate between bacterial and archaeal DNA sequences. Interestingly, archaea of the order Halobacteriaceae have periodic signatures similar to bacteria, possibly due to their early divergence from other archaea, extensive lateral gene transfer, or due to their adaptation to high salt environments. Our results have practical implications for development and application of genome signature-based methods for analysis and classification of DNA sequences.


Asunto(s)
ADN/genética , Filogenia , Células Procariotas/metabolismo , Composición de Base , Emparejamiento Base/genética , Secuencia de Bases , Cromosomas/genética , Genoma/genética , Análisis de Componente Principal , Factores de Tiempo
19.
RNA Biol ; 7(5): 586-95, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21037422

RESUMEN

Epstein-Barr virus (EBV) infection of human B cells requires the presence of non-coding RNAs (ncRNAs), which regulate expression of viral and host genes. To identify differentially expressed regulatory ncRNAs involved in EBV infection, a specialized cDNA library, enriched for ncRNAs derived from EBV-infected cells, was subjected to deep-sequencing. From the deep-sequencing analysis, we generated a custom-designed ncRNA-microchip to investigate differential expression of ncRNA candidates. By this approach, we identified 25 differentially expressed novel host-encoded ncRNA candidates in EBV-infected cells, comprised of six non-repeat-derived and 19 repeat-derived ncRNAs. Upon EBV infection of B cells, we also observed increased expression levels of oncogenic miRNAs mir-221 and mir-222, which might contribute to EBV-related tumorigenesis, as well as decreased expression levels of RNase P RNA, a ribozyme involved in tRNA maturation. Thus, in this study we demonstrate that our ncRNA-microchip approach serves as a powerful tool to identify novel differentially expressed ncRNAs acting as potential regulators of gene expression during EBV infection.


Asunto(s)
Procedimientos Analíticos en Microchip/métodos , ARN no Traducido/análisis , Linfocitos B , Infecciones por Virus de Epstein-Barr , Perfilación de la Expresión Génica , Herpesvirus Humano 4 , Humanos
20.
Phys Chem Chem Phys ; 12(45): 15101-10, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-20963231

RESUMEN

The additive free heteronucleation and nanocrystallization of ternary Zn(x)Ti(y)O(z) sols and coatings is presented. A proper adjustment of the Zn/Ti ratio in the sol allows the formation of elaborate superhydrophilic cubic spinel-like Zn(2)TiO(4), c-ZnTiO(3) or h-ZnTiO(3)-ilmentite/r-TiO(2)-rutile films. Their morphology and natural superhydrophilicity can be fine-tuned by the inclusion of 5% silica. This doping step delivers high dye intake capacities and water contact angle values below 3°. XPS analysis indicates that Zn and Si enrichment enables greater surface hydroxylation and thus improved water wetting behaviour. The transparent h-ZnTiO(3)-ilmenite/r-TiO(2) nanocomposite coatings deposited on glass and Si-wafers show a remarkable activity in the photomineralization of fatty-acids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA