Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35216174

RESUMEN

(1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism, protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO) mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 deletion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase (AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of age-induced metabolic dysfunction.


Asunto(s)
Envejecimiento/metabolismo , Metabolismo Energético , Resistencia a la Insulina , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Aumento de Peso , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Desacopladora 1/metabolismo
2.
Arch Biochem Biophys ; 577-578: 49-59, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25935364

RESUMEN

Peroxynitrite has been implicated in ß-cell dysfunction and insulin resistance in obesity. Chemical catalysts that destroy peroxynitrite, therefore, may have therapeutic value for treating type 2 diabetes. To this end, we have recently demonstrated that Mn(III) bis(hydroxyphenyl)-dipyrromethene complexes, SR-135 and its analogs, can effectively catalyze the decomposition of peroxynitrite in vitro and in vivo through a 2-electron mechanism (Rausaria et al., 2011). To study the effects of SR-135 on glucose homeostasis in obesity, B6D2F1 mice were fed with a high fat-diet (HFD) for 12 weeks and treated with vehicle, SR-135 (5mg/kg), or a control drug SRB for 2 weeks. SR-135 significantly reduced fasting blood glucose and insulin levels, and enhanced glucose tolerance as compared to HFD control, vehicle or SRB. SR-135 also enhanced glucose-stimulated insulin secretion based on ex vivo studies. Moreover, SR-135 increased insulin content, restored islet architecture, decreased islet size, and reduced tyrosine nitration and apoptosis. These results suggest that a peroxynitrite decomposing catalyst enhances ß-cell function and survival under nutrient overload.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Manganeso/farmacología , Obesidad/complicaciones , Ácido Peroxinitroso/metabolismo , Porfobilinógeno/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Glucemia/análisis , Glucemia/metabolismo , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/química , Insulina/sangre , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Manganeso/química , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/metabolismo , Porfobilinógeno/química , Porfobilinógeno/farmacología
3.
Mol Metab ; 54: 101364, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34757046

RESUMEN

OBJECTIVE: Obesity and insulin resistance greatly increase the risk of nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH). We have previously discovered that whole-body and adipocyte-specific Ip6k1deletion protects mice from high-fat-diet-induced obesity and insulin resistance due to improved adipocyte thermogenesis and insulin signaling. Here, we aimed to determine the impact of hepatocyte-specific and whole-body Ip6k1 deletion (HKO and Ip6k1-KO or KO) on liver metabolism and NAFLD/NASH. METHODS: Body weight and composition; energy expenditure; glycemic profiles; and serum and liver metabolic, inflammatory, fibrotic and toxicity parameters were assessed in mice fed Western and high-fructose diet (HFrD) (WD: 40% kcal fat, 1.25% cholesterol, no added choline and HFrD: 60% kcal fructose). Mitochondrial oxidative capacity was evaluated in isolated hepatocytes. RNA-Seq was performed in liver samples. Livers from human NASH patients were analyzed by immunoblotting and mass spectrometry. RESULTS: HKO mice displayed increased hepatocyte mitochondrial oxidative capacity and improved insulin sensitivity but were not resistant to body weight gain. Improved hepatocyte metabolism partially protected HKO mice from NAFLD/NASH. In contrast, enhanced whole-body metabolism and reduced body fat accumulation significantly protected whole-body Ip6k1-KO mice from NAFLD/NASH. Mitochondrial oxidative pathways were upregulated, whereas gluconeogenic and fibrogenic pathways were downregulated in Ip6k1-KO livers. Furthermore, IP6K1 was upregulated in human NASH livers and interacted with the enzyme O-GlcNAcase that reduces protein O-GlcNAcylation. Protein O-GlcNAcylation was found to be reduced in Ip6k1-KO and HKO mouse livers. CONCLUSION: Pleiotropic actions of IP6K1 in the liver and other metabolic tissues mediate hepatic metabolic dysfunction and NAFLD/NASH, and thus IP6K1 deletion may be a potential treatment target for this disease.


Asunto(s)
Hígado Graso/metabolismo , Hepatocitos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Animales , Deficiencia de Colina/metabolismo , Azúcares de la Dieta/efectos adversos , Humanos , Ratones , Ratones Endogámicos C57BL , Fosfotransferasas (Aceptor del Grupo Fosfato)/deficiencia , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA