Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36298334

RESUMEN

Measurement error is non-negligible and crucial in SHM data analysis. In many applications of SHM, measurement errors are statistically correlated in space and/or in time for data from sensor networks. Existing works solely consider spatial correlation for measurement error. When both spatial and temporal correlation are considered simultaneously, the existing works collapse, as they do not possess a suitable form describing spatially and temporally correlated measurement error. In order to tackle this burden, this paper generalizes the form of correlated measurement error from spatial correlation only or temporal correlation only to spatial-temporal correlation. A new form of spatial-temporal correlation and the corresponding likelihood function are proposed, and multiple candidate model classes for the measurement error are constructed, including no correlation, spatial correlation, temporal correlation, and the proposed spatial-temporal correlation. Bayesian system identification is conducted to achieve not only the posterior probability density function (PDF) for the model parameters, but also the posterior probability of each candidate model class for selecting the most suitable/plausible model class for the measurement error. Examples are presented with applications to model updating and modal frequency prediction under varying environmental conditions, ensuring the necessity of considering correlated measurement error and the capability of the proposed Bayesian system identification in the uncertainty quantification at the parameter and model levels.


Asunto(s)
Teorema de Bayes
2.
Sensors (Basel) ; 20(19)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036148

RESUMEN

The problem of uncertainty quantification (UQ) for multi-sensor data is one of the main concerns in structural health monitoring (SHM). One important task is multivariate joint probability density function (PDF) modelling. Copula-based statistical inference has attracted significant attention due to the fact that it decouples inferences on the univariate marginal PDF of each random variable and the statistical dependence structure (called copula) among the random variables. This paper proposes the Copula-UQ, composing multivariate joint PDF modelling, inference on model class selection and parameter identification, and probabilistic prediction using incomplete information, for multi-sensor data measured from a SHM system. Multivariate joint PDF is modeled based on the univariate marginal PDFs and the copula. Inference is made by combing the idea of the inference functions for margins and the maximum likelihood estimate. Prediction on the PDF of the target variable, using the complete (from normal sensors) or incomplete information (due to missing data caused by sensor fault issue) of the predictor variable, are made based on the multivariate joint PDF. One example using simulated data and one example using temperature data of a multi-sensor of a monitored bridge are presented to illustrate the capability of the Copula-UQ in joint PDF modelling and target variable prediction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA