Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 260: 121963, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38924806

RESUMEN

The addition of composite conductive materials is being increasingly recognized as a promising strategy to enhance anaerobic digestion (AD) performance. However, the influence of these materials on protein hydrolysis has been poorly documented. Here, a novel magnetic biochar derived from oil sludge and straw was synthesized using different iron sources and successfully applied in sludge AD. Experimental results revealed that magnetic biochar modified by Fe2+ exhibited excellent electron transfer capacity, moderate magnetization, diverse functional groups (e.g. C=O, C-O=O-), and abundant iron distribution. These characteristics significantly enhanced the hydrolysis of tryptophan-like components, leading to increased methane production (144.44 mL gVS-1vs 79.72 mL gVS-1 in the control test). Molecular docking analysis revealed that the binding of magnetic biochar related Fe2+ and Fe3+, onto sludge proteins via hydrogen bond played a key role in promoting subsequent protein hydrolysis. Additionally, the noteworthy conservation of protein structures from α-helix and ß-sheet to random coil, along with the breakdown of the amide I-associated C=O group and amide III-related CN and NH bonds following the addition of magnetic biochar, accelerated the degradation of sludge protein. Observation of variations in protease activity, coenzyme F420, electron transfer system (ETS), and conductivity within the AD systems, particularly the enrichment of Methanospirillum and Methanosaeta archaea, as well as the Petrimonas, Comamonas, and Syntrophomonas bacteria, suggested that magnetic biochar facilitated a conducive environment by improving hydrolysis-acidification and the direct interspecies electron transfer (DIET) process for acetoclastic methanogens. Moreover, metabolic pathways further proved that tryptophan metobalism and acetoclastic methanogenesis were both facilitated by magnetic biochar. This study provides an in-depth understanding of the impact of magnetic biochar on protein hydrolysis in sewage sludge AD.


Asunto(s)
Carbón Orgánico , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Carbón Orgánico/química , Anaerobiosis , Hidrólisis , Simulación del Acoplamiento Molecular , Proteínas/química , Proteínas/metabolismo
2.
Sci Total Environ ; 951: 175511, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147043

RESUMEN

Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.


Asunto(s)
COVID-19 , Pandemias , Aguas Residuales , Contaminantes Químicos del Agua , COVID-19/epidemiología , Contaminantes Químicos del Agua/análisis , Humanos , Medición de Riesgo , Monitoreo del Ambiente , SARS-CoV-2 , Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA