Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(49): 74163-74172, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35633458

RESUMEN

Semi-coking wastewater contains a rich source of toxic and refractory compounds. Three-dimensional electro-Fenton (3D/EF) process used CuFe2O4 as heterocatalyst and activated carbon (AC) as particle electrode was constructed for degrading semi-coking wastewater greenly and efficiently. CuFe2O4 nanoparticles were prepared by coprecipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy disperse spectroscopy (EDS). Factors like dosage of CuFe2O4, applied voltage, dosage of AC and pH, which effect COD removal rate of semi-coking waste water were studied. The results showed that COD removal rate reached to 80.9% by 3D/EF process at the optimum condition: 4 V, 0.3 g of CuFe2O4, 1 g of AC and pH = 3. Trapping experiment suggesting that hydroxyl radical (•OH) is the main active radical. The surface composition and chemical states of the fresh and used CuFe2O4 were analyzed by XPS indicating that Fe, Cu, and O species are involved into the 3D/EF process. Additionally, anode oxidation and the adsorption and catalysis of AC are also contributed to the bleaching of semi-coking waste water. The possible mechanisms of 3D/EF for degrading semi-coking waste water by CuFe2O4 heterocatalyst were proposed.


Asunto(s)
Coque , Contaminantes Químicos del Agua , Catálisis , Carbón Orgánico/química , Coque/análisis , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Oxidación-Reducción , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA