Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29695, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660259

RESUMEN

Cotton bollworm (Helicoverpa armigera) is a highly polyphagous, widely prevalent, and persistent Old World insect pest that affects numerous important crops that are directly consumed by people, including tomato, cotton, pigeon pea, chickpea, rice, sorghum, and cowpea. Insects do not synthesize steroids but obtain them from their diet. Inhibition of dietary uptake of steroids by insects is a potentially effective insecticidal mechanism that should not be toxic to humans and other mammals, who synthesize their steroids. Ten curcumin derivatives were tested against H. armigera sterol carrier protein-2 (HaSCP-2) for their potential as insecticidal agents. Curcumin derivatives were initially docked at the binding site of HaSCP-2 to determine their binding affinities and plausible binding modes. The binding modes predominantly show hydrophobic interactions of derivatives with Phe53, Phe110, and Phe89 as core interacting residues in the active site. Validation of in silico results was carried out by performing a fluorescence binding and displacement assay to determine the binding affinities of curcumin derivatives. Among a collection of curcumin derivatives tested, Cur10 showed the lowest IC50 value of 9.64 µM, while Cur07 was 19.86 µM, and Cur06 was 20.79 µM. There was a significant negative correlation between the ability of the curcumin derivatives tested to displace the fluorescent probe from the sterol binding site of HaSCP-2 and to inhibit Sf9 insect cell growth in culture, which is consistent with the curcumin derivatives acting by the novel mechanism of blocking sterol uptake. Then molecular dynamics simulation studies validated the predicted binding modes and the interactions of curcumin derivatives with HaSCP-2 protein. In conclusion, these studies support the potential use of curcumin derivatives as insecticidal agents.

2.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373021

RESUMEN

Despite a major threat to the public health in tropical and subtropical regions, dengue virus (DENV) infections are untreatable. Therefore, efforts are needed to investigate cost-effective therapeutic agents that could cure DENV infections in future. The NS2B-NS3 protease encoded by the genome of DENV is considered a critical target for the development of anti-dengue drugs. The objective of the current study was to find out a specific inhibitor of the NS2B-NS3 proteases from all four serotypes of DENV. To begin with, nine plant extracts with a medicinal history were evaluated for their role in inhibiting the NS2B-NS3 proteases by Fluorescence Resonance Energy Transfer (FRET) assay. Among the tested extracts, Punica granatum was found to be the most effective one. The metabolic profiling of this extract revealed the presence of several active compounds, including ellagic acid, punicalin and punicalagin, which are well-established antiviral agents. Further evaluation of IC50 values of these three antiviral molecules revealed punicalagin as the most potent anti-NS2B-NS3 protease drug with IC50 of 0.91 ± 0.10, 0.75 ± 0.05, 0.42 ± 0.03, 1.80 ± 0.16 µM against proteases from serotypes 1, 2, 3 and 4, respectively. The docking studies demonstrated that these compounds interacted at the active site of the enzyme, mainly with His and Ser residues. Molecular dynamics simulations analysis also showed the structural stability of the NS2B-NS3 proteases in the presence of punicalagin. In summary, this study concludes that the punicalagin can act as an effective inhibitor against NS2B-NS3 proteases from all four serotypes of DENV.Communicated by Ramaswamy H. Sarma.

3.
PLoS One ; 18(12): e0295741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38113210

RESUMEN

Aurora kinases (AURKs) have been identified as promising biological targets for the treatment of cancer. In this study, molecular dynamics simulations were employed to investigate the binding selectivity of three inhibitors (HPM, MPY, and VX6) towards AURKA and AURKB by predicting their binding free energies. The results show that the inhibitors HPM, MPY, and VX6 have more favorable interactions with AURKB as compared to AURKA. The binding energy decomposition analysis revealed that four common residue pairs (L139, L83), (V147, V91), (L210, L154), and (L263, L207) showed significant binding energies with HPM, MPY, and VX6, hence responsible for the binding selectivity of AURKA and AURKB to the inhibitors. The MD trajectory analysis also revealed that the inhibitors affect the dynamic flexibility of protein structure, which is also responsible for the partial selectivity of HPM, MPY, and VX6 towards AURKA and AURKB. As expected, this study provides useful insights for the design of potential inhibitors with high selectivity for AURKA and AURKB.


Asunto(s)
Aurora Quinasa A , Simulación de Dinámica Molecular , Aurora Quinasa A/metabolismo , Aurora Quinasa B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA