Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 600(7887): 148-152, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819665

RESUMEN

The proto-oncogene ALK encodes anaplastic lymphoma kinase, a receptor tyrosine kinase that is expressed primarily in the developing nervous system. After development, ALK activity is associated with learning and memory1 and controls energy expenditure, and inhibition of ALK can prevent diet-induced obesity2. Aberrant ALK signalling causes numerous cancers3. In particular, full-length ALK is an important driver in paediatric neuroblastoma4,5, in which it is either mutated6 or activated by ligand7. Here we report crystal structures of the extracellular glycine-rich domain (GRD) of ALK, which regulates receptor activity by binding to activating peptides8,9. Fusing the ALK GRD to its ligand enabled us to capture a dimeric receptor complex that reveals how ALK responds to its regulatory ligands. We show that repetitive glycines in the GRD form rigid helices that separate the major ligand-binding site from a distal polyglycine extension loop (PXL) that mediates ALK dimerization. The PXL of one receptor acts as a sensor for the complex by interacting with a ligand-bound second receptor. ALK activation can be abolished through PXL mutation or with PXL-targeting antibodies. Together, these results explain how ALK uses its atypical architecture for its regulation, and suggest new therapeutic opportunities for ALK-expressing cancers such as paediatric neuroblastoma.


Asunto(s)
Quinasa de Linfoma Anaplásico/química , Quinasa de Linfoma Anaplásico/metabolismo , Ligandos , Quinasa de Linfoma Anaplásico/genética , Animales , Sitios de Unión , Cristalografía por Rayos X , Glicina/química , Glicina/metabolismo , Humanos , Lactante , Masculino , Ratones , Modelos Moleculares , Mutación , Células 3T3 NIH , Neuroblastoma , Dominios Proteicos , Multimerización de Proteína
2.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652739

RESUMEN

The nuclear envelope (NE) surrounds the nucleus with a double membrane in eukaryotic cells. The double membranes are embedded with proteins that are synthesized on the endoplasmic reticulum and often destined specifically for either the outer nuclear membrane (ONM) or the inner nuclear membrane (INM). These nuclear envelope transmembrane proteins (NETs) play important roles in cellular function and participate in transcription, epigenetics, splicing, DNA replication, genome architecture, nuclear structure, nuclear stability, nuclear organization, and nuclear positioning. These vital functions are dependent upon both the correct localization and relative concentrations of NETs on the appropriate membrane of the NE. It is, therefore, important to understand the distribution and abundance of NETs on the NE. This review will evaluate the current tools and methodologies available to address this important topic.


Asunto(s)
Membrana Nuclear/metabolismo , Animales , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Imagen Molecular/métodos , Membrana Nuclear/ultraestructura , Imagen Óptica/métodos
3.
Cell Rep ; 43(1): 113603, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38117650

RESUMEN

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with important roles in many cellular processes as well as in cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. How these dimers relate to higher-order EGFR oligomers seen in cell membranes, however, remains unclear. Here, we used single-particle tracking (SPT) and Förster resonance energy transfer imaging to examine how each domain of EGFR contributes to receptor oligomerization and the rate of receptor diffusion in the cell membrane. Although the extracellular region of EGFR is sufficient to drive receptor dimerization, we find that the EGF-induced EGFR slowdown seen by SPT requires higher-order oligomerization-mediated in part by the intracellular tyrosine kinase domain when it adopts an active conformation. Our data thus provide important insight into the interactions required for higher-order EGFR assemblies involved in EGF signaling.


Asunto(s)
Factor de Crecimiento Epidérmico , Receptores ErbB , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Membrana Celular/metabolismo , Fosforilación , Transducción de Señal
4.
J Membr Biol ; 246(6): 487-93, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23727984

RESUMEN

Fibroblast growth factor receptor 3 (FGFR3) is a single-pass membrane protein and a member of the receptor tyrosine kinase family of proteins that is involved in the regulation of skeletal growth and development. FGFR3 has three distinct domains: the ligand binding extracellular domain, the cytosolic kinase domain and the transmembrane domain (TMD). Previous work with the isolated FGFR3 TMD has shown that it has the ability to dimerize. Clinical and genetic studies have also correlated mutations in the TMD with a variety of skeletal and cranial dysplasias and cancer. Although the structures of the extracellular and cytosolic domains of FGFR3 have been solved, the structure of the TMD dimer is still unknown. Furthermore, very little is known regarding the effects of pathogenic mutations on the TMD dimer structure. We, therefore, carried out ToxR activity assays to determine the role of the SmXXXSm motif in the dimerization of the FGFR3 TMD. This motif has been shown to drive the association of many transmembrane proteins. Our results indicate that the interaction between wild-type FGFR3 TMDs is not mediated by two adjacent SmXXXSm motifs. In contrast, studies using the TMD carrying the pathogenic A391E mutation suggest that the motifs play a role in the dimerization of the mutant TMD. Based on these observations, here we report a new mechanistic model in which the pathogenic A391E mutation induces a structural change that leads to the formation of a more stable dimer.


Asunto(s)
Mutación Missense , Multimerización de Proteína , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/metabolismo , Humanos , Neoplasias/química , Neoplasias/genética , Neoplasias/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo
5.
bioRxiv ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37090557

RESUMEN

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) with important roles in many cellular processes as well as cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. However, it is not clear how these dimers relate to higher-order EGFR oligomers detected at the cell surface. We used single-particle tracking (SPT) and Förster resonance energy transfer (FRET) imaging to examine how each domain within EGFR contributes to receptor dimerization and the rate of its diffusion in the cell membrane. We show that the EGFR extracellular region is sufficient to drive receptor dimerization, but that the EGF-induced EGFR slow-down seen by SPT requires formation of higher order oligomers, mediated in part by the intracellular tyrosine kinase domain - but only when in its active conformation. Our data thus provide important insight into higher-order EGFR interactions required for EGF signaling.

6.
Nat Commun ; 11(1): 2184, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366843

RESUMEN

Roughly 10% of eukaryotic transmembrane proteins are found on the nuclear membrane, yet how such proteins target and translocate to the nucleus remains in dispute. Most models propose transport through the nuclear pore complexes, but a central outstanding question is whether transit occurs through their central or peripheral channels. Using live-cell high-speed super-resolution single-molecule microscopy we could distinguish protein translocation through the central and peripheral channels, finding that most inner nuclear membrane proteins use only the peripheral channels, but some apparently extend intrinsically disordered domains containing nuclear localization signals into the central channel for directed nuclear transport. These nucleoplasmic signals are critical for central channel transport as their mutation blocks use of the central channels; however, the mutated proteins can still complete their translocation using only the peripheral channels, albeit at a reduced rate. Such proteins can still translocate using only the peripheral channels when central channel is blocked, but blocking the peripheral channels blocks translocation through both channels. This suggests that peripheral channel transport is the default mechanism that was adapted in evolution to include aspects of receptor-mediated central channel transport for directed trafficking of certain membrane proteins.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Transporte Activo de Núcleo Celular , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de Proteínas
7.
Curr Protoc Cell Biol ; 76: 21.11.1-21.11.13, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28862339

RESUMEN

Nuclear envelope transmembrane proteins (NETs) are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM) in eukaryotic cells. The abnormal distribution of NETs has been associated with many human diseases. However, quantitative determination of the spatial distribution and translocation dynamics of NETs on the ONM and INM is still very limited in currently existing approaches. Here we demonstrate a single-point single-molecule fluorescence recovery after photobleaching (FRAP) microscopy technique that enables quick determination of distribution and translocation rates for NETs in vivo. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Difusión , Células HeLa , Humanos , Microscopía Confocal , Técnicas de Cultivo de Tejidos
8.
Methods Mol Biol ; 1411: 113-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27147037

RESUMEN

Determining the locations of nuclear envelope transmembrane proteins and their concentrations across the outer and inner nuclear membranes has been a challenging and time-consuming process. Typically, this required the week-long process of fixing and immunogold staining of cells prior to analysis by electron microscopy. Here, we describe a method, single-point fluorescence recovery after photobleaching (spFRAP), which is able to quickly determine the localization and distribution of nuclear membrane proteins along the double nuclear envelope membranes with a precision of 10-15 nm in a matter of 10-20 min the day after transfection.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Expresión Génica , Genes Reporteros , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Transporte de Proteínas , Transfección
9.
Nat Commun ; 7: 12562, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27558844

RESUMEN

The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Imagen Individual de Molécula/métodos , Transporte Biológico , Retículo Endoplásmico/metabolismo , Estudios de Factibilidad , Recuperación de Fluorescencia tras Fotoblanqueo/instrumentación , Células HeLa , Humanos , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA