Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 29(3): 3808-3824, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770973

RESUMEN

Development of photovoltaic water-microdroplet manipulation using LN:Fe crystals has to meet the requirement of the hybrid and heating-avoided design of biological lab-on-chips. To fulfill this, we demonstrate a successful manipulation of a water microdroplet on a hydrophobic substrate by utilizing the long-range photovoltaic interaction from a distant LN:Fe crystal (see Visualization 1). The maximal manipulation distance (MMD) is found to be dependent on the laser-illumination intensity at the LN:Fe crystal and it can be tuned up to a sub-centimeter level (∼4 mm). Basing on the two-center model of light-induced charge transport in the LN:Fe crystal, we establish an analytic model to describe the force balance during the microdroplet manipulation under a long-range photovoltaic interaction. Either shortening the manipulation distance or increasing the illumination intensity can enhance the photovoltaic interaction and increase the velocity of the microdroplet being manipulated. An abrupt shape change followed by a fast repelling movement of the water microdroplet is observed under a strong photovoltaic interaction (see Visualization 2).

2.
Opt Express ; 27(18): 25767-25776, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31510442

RESUMEN

We demonstrate an all-optical active mode of dielectric microdroplet splitting in a sandwich structure consisting of two anti-symmetrical y-cut LN:Fe substrates. The dynamic process of the microdroplet splitting and the simulation of the electrostatic interaction inside the sandwich gap show that the combination of two anti-symmetrical substrates are capable to provide a sufficient dielectrophoretic force and to reduce the unbalance of the drag forces for a stable and efficient splitting of the microdroplet. The dependences of the splitting time on the illumination intensity and the initial microdroplet size are also studied, and the results show that the microdroplet splitting process is fully governed by the establishment of the superposed photovoltaic field inside the sandwich gap. A key ratio Er/E0, representing the microdroplet splitting difficulty for a given sandwich structure, is found linearly dependent on the initial microdroplet size. These points are quite important to the integration of splitting functionality on the LN-based microfluidic chip.

3.
Opt Express ; 27(26): 37680-37694, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878545

RESUMEN

Optically massive trapping of the moisture in the air into an adjacent surface is a potential technique in the fields of bacterial adhesion and microfluidic generation, which is quite important to the development of LN-based biological lab-on-chips. Here we demonstrate on a LiNbO3:Fe substrate the visible-light-assisted condensation of the water vapor in a flowing stream created by an ultrasonic atomizer. Through analyzing the dynamic processes of the visible-light-assisted water condensation at different illumination intensities, it is found that the extent of the water condensation, the bending angle of water vapor trails and the interaction range of the condensation effect are highly dependent on the illumination intensity. According to these findings and the simulated trajectories of the water vapor stream at different illumination intensities, we propose that this visible-light-assisted water condensation is an aggregation process of tiny water droplets driven by the dielectrophoretic interaction of inhomogeneous photovoltaic field and also an electrostatic screening course of photovoltaic charges through the charged evaporation of condensed water. The prolonged condensation of water vapor after a high-intensity illumination and that of oil vapor at a super-low evaporation rate are also studied, and the agreement between the simulation and experimental results reinforces the above mechanism. The reported technique, employing the inexpensive, safe-for-cell visible laser beam, is quite convenient for the controllable generation of various biological microdroplets, and thus it is promising for the microfluidic functionality integration of LN-based biological lab-on-chips.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA