Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Apoptosis ; 26(5-6): 323-337, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33978920

RESUMEN

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is characterized by chronic, relapsing intestinal inflammation. Galectin-1 (Gal-1) is an endogenous lectin with key pro-resolving roles, including induction of T-cell apoptosis and secretion of immunosuppressive cytokines. Despite considerable progress, the relevance of Gal-1-induced T-cell death in inflamed tissue from human IBD patients has not been ascertained. Intestinal biopsies and surgical specimens from control patients (n = 52) and patients with active or inactive IBD (n = 97) were studied. Gal-1 expression was studied by RT-qPCR, immunoblotting, ELISA and immunohistochemistry. Gal-1-specific ligands and Gal-1-induced apoptosis of lamina propria (LP) T-cells were determined by TUNEL and flow cytometry. We found a transient expression of asialo core 1-O-glycans in LP T-cells from inflamed areas (p < 0.05) as revealed by flow cytometry using peanut agglutinin (PNA) binding and assessing dysregulation of the core-2 ß 1-6-N-acetylglucosaminyltransferase 1 (C2GNT1), an enzyme responsible for elongation of core 2 O-glycans. Consequently, Gal-1 binding was attenuated in CD3+CD4+ and CD3+CD8+ LP T-cells isolated from inflamed sites (p < 0.05). Incubation with recombinant Gal-1 induced apoptosis of LP CD3+ T-cells isolated from control subjects and non-inflamed areas of IBD patients (p < 0.05), but not from inflamed areas. In conclusion, our findings showed that transient regulation of the O-glycan profile during inflammation modulates Gal-1 binding and LP T-cell survival in IBD patients.


Asunto(s)
Colitis Ulcerosa/patología , Enfermedad de Crohn/patología , Galectina 1/metabolismo , Mucosa Intestinal/patología , Linfocitos T/patología , Adolescente , Adulto , Anciano , Apoptosis/efectos de los fármacos , Supervivencia Celular , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Femenino , Humanos , Inflamación , Mucosa Intestinal/metabolismo , Ligandos , Masculino , Persona de Mediana Edad , Polisacáridos/química , Polisacáridos/metabolismo , Linfocitos T/metabolismo , Adulto Joven
2.
J Cell Physiol ; 232(9): 2489-2496, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27626762

RESUMEN

Intestinal epithelial cell culture is important for biological, functional, and immunological studies. Since enterocytes have a short in vivo life span due to anoikis, we aimed to establish a novel and reproducible method to prolong the survival of mouse and human cells. Cells were isolated following a standard procedure, and cultured on ordered-cow's collagen membranes. A prolonged cell life span was achieved; cells covered the complete surface of bio-membranes and showed a classical enterocyte morphology with high expression of enzymes supporting the possibility of cryopreservation. Apoptosis was dramatically reduced and cultured enterocytes expressed cytokeratin and LGR5 (low frequency). Cells exposed to LPS or flagellin showed the induction of TLR4 and TLR5 expression and a functional phenotype upon exposure to the probiotic Bifidobacterium bifidum or the pathogenic Clostridium difficile. The secretion of the homeostatic (IL-25 and TSLP), inhibitory (IL-10 and TGF-ß), or pro-inflammatory mediators (IL-1ß and TNF) were induced. In conclusion, this novel protocol using cow's collagen-ordered membrane provides a simple and reproducible method to maintain intestinal epithelial cells functional for cell-microorganism interaction studies and stem cell expansion. J. Cell. Physiol. 232: 2489-2496, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Colágeno/metabolismo , Enterocitos/fisiología , Membranas Artificiales , Cultivo Primario de Células/métodos , Animales , Apoptosis , Bifidobacterium bifidum/fisiología , Biomarcadores/metabolismo , Supervivencia Celular , Células Cultivadas , Clostridioides difficile/fisiología , Citocinas/metabolismo , Enterocitos/enzimología , Enterocitos/microbiología , Enzimas/metabolismo , Femenino , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación , Queratinas/metabolismo , Masculino , Ratones de la Cepa 129 , Persona de Mediana Edad , Fenotipo , Receptores Acoplados a Proteínas G/metabolismo , Factores de Tiempo , Receptores Toll-Like/metabolismo
3.
J Cell Physiol ; 231(7): 1575-85, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26566180

RESUMEN

Galectins play key roles in the inflammatory cascade. In this study, we aimed to analyze the effect of galectin-1 (Gal-1) in the function of intestinal epithelial cells (IECs) isolated from healthy and inflamed mucosa. IECs isolated from mice or patients with inflammatory bowel diseases (IBD) were incubated with different pro-inflammatory cytokines, and Gal-1 binding, secretion of homeostatic factors and viability were assessed. Experimental models of food allergy and colitis were used to evaluate the in vivo influence of inflammation on Gal-1 binding and modulation of IECs. We found an enhanced binding of Gal-1 to: (a) murine IECs exposed to IL-1ß, TNF, and IL-13; (b) IECs from inflamed areas in intestinal tissue from IBD patients; (c) small bowel of allergic mice; and (d) colon from mice with experimental colitis. Our results showed that low concentrations of Gal-1 favored a tolerogenic micro-environment, whereas high concentrations of this lectin modulated viability of IECs through mechanisms involving activation of caspase-9 and modulation of Bcl-2 protein family members. Our results showed that, when added in the presence of diverse pro-inflammatory cytokines such as tumor necrosis factor (TNF), IL-13 and IL-5, Gal-1 differentially promoted the secretion of growth factors including thymic stromal lymphopoietin (TSLP), epidermal growth factor (EGF), IL-10, IL-25, and transforming growth factor (TGF-ß1 ). In conclusion, we found an augmented binding of Gal-1 to IECs when exposed in vitro or in vivo to inflammatory stimuli, showing different effects depending on Gal-1 concentration. These findings highlight the importance of the inflammatory micro-environment of mucosal tissues in modulating IECs susceptibility to the immunoregulatory lectin Gal-1 and its role in epithelial cell homeostasis.


Asunto(s)
Colitis/metabolismo , Galectina 1/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Animales , Microambiente Celular/genética , Colitis/genética , Colitis/patología , Colon/metabolismo , Colon/patología , Hipersensibilidad a los Alimentos/genética , Hipersensibilidad a los Alimentos/metabolismo , Galectina 1/genética , Humanos , Inflamación/genética , Inflamación/patología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Ratones
4.
Biometals ; 24(6): 1153-68, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21755303

RESUMEN

The complex of vanadyl(IV) cation with oxodiacetate, VO(oda) caused an inhibitory effect on the proliferation of the human colon adenocarcinoma cell line Caco-2 in the range of 25-100 µM (P < 0.001). This inhibition was partially reversed by scavengers of free radicals. The difference in cell proliferation in the presence and the absence of scavengers was statistically significant in the range of 50-100 µM (P < 0.05). VO(oda) altered lysosomal and mitochondria metabolisms (neutral red and MTT bioassays) in a dose-response manner from 10 µM (P < 0.001). Morphological studies showed important transformations that correlated with the disassembly of actin filaments and a decrease in the number of cells in a dose response manner. Moreover, VO(oda) caused statistically significant genotoxic effects on Caco-2 cells in the low range of concentration (5-25 µM) (Comet assay). Increment in the oxidative stress and a decrease in the GSH level are the main cytotoxic mechanisms of VO(oda). These effects were partially reversed by scavengers of free radicals in the range of 50-100 µM (P < 0.05). Besides, VO(oda) interacted with plasmidic DNA causing single and double strand cleavage, probably through the action of free radical species. Altogether, these results suggest that VO(oda) is a good candidate to be evaluated for alternative therapeutics in cancer treatment.


Asunto(s)
Acetatos/toxicidad , Acetatos/uso terapéutico , Células CACO-2/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Vanadatos/toxicidad , Vanadatos/uso terapéutico , Acetatos/química , Actinas/metabolismo , Animales , Células CACO-2/citología , Proliferación Celular/efectos de los fármacos , Ensayo Cometa , Citoesqueleto/efectos de los fármacos , Daño del ADN , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vanadatos/química
5.
Front Pharmacol ; 12: 658026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935778

RESUMEN

Ulcerative colitis and Crohn's disease, the two main forms of inflammatory bowel disease (IBD), are immunologically mediated disorders. Several therapies are focused on activated T cells as key targets. Although Lactobacillus kefiri has shown anti-inflammatory effects in animal models, few studies were done using human mucosal T cells. The aim of this work was to investigate the immunomodulatory effects of this bacterium on intestinal T cells from patients with active IBD. Mucosal biopsies and surgical samples from IBD adult patients (n = 19) or healthy donors (HC; n = 5) were used. Lamina propria mononuclear cells were isolated by enzymatic tissue digestion, and entero-adhesive Escherichia coli-specific lamina propria T cells (LPTC) were expanded. The immunomodulatory properties of L. kefiri CIDCA 8348 strain were evaluated on biopsies and on anti-CD3/CD28-activated LPTC. Secreted cytokines were quantified by ELISA, and cell proliferation and viability were assessed by flow cytometry. We found that L. kefiri reduced spontaneous release of IL-6 and IL-8 from inflamed biopsies ex vivo. Activated LPTC from IBD patients showed low proliferative rates and reduced secretion of TNF-α, IL-6, IFN-γ and IL-13 in the presence of L. kefiri. In addition, L. kefiri induced an increased frequency of CD4+FOXP3+ LPTC along with high levels of IL-10. This is the first report showing an immunomodulatory effect of L. kefiri CIDCA 8348 on human intestinal cells from IBD patients. Understanding the mechanisms of interaction between probiotics and immune mucosal cells may open new avenues for treatment and prevention of IBD.

6.
Microbiology (Reading) ; 153(Pt 4): 1286-1296, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17379738

RESUMEN

Rhizobium tropici CIAT899 displays intrinsic tolerance to acidity, and efficiently nodulates Phaseolus vulgaris at low pH. By characterizing a gshB mutant strain, glutathione has been previously demonstrated to be essential for R. tropici tolerance to acid stress. The wild-type gshB gene region has been cloned and its transcription profile has been characterized by using quantitative real-time PCR and transcriptional gene fusions. Activation of the gshB gene under acid-stress conditions was demonstrated. gshB is also induced by UV irradiation. Upstream from gshB a putative sigma(70) promoter element and an inverted repeat sequence were identified, which are proposed to be involved in expression under neutral and acidic conditions, respectively. Gel retardation assays indicate that transcription in acid conditions may involve protein binding to an upstream regulatory region.


Asunto(s)
Glutatión/metabolismo , Rhizobium tropici/metabolismo , Microbiología del Suelo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Phaseolus/microbiología , Regiones Promotoras Genéticas
7.
J Bacteriol ; 187(1): 168-74, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15601700

RESUMEN

Rhizobia form a symbiotic relationship with plants of the legume family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. We have examined the importance of glutathione (GSH) during free-living growth and symbiosis of Sinorhizobium meliloti. An S. meliloti mutant strain (SmgshA) which is unable to synthesize GSH due to a gene disruption in gshA, encoding the enzyme for the first step in the biosynthesis of GSH, was unable to grow under nonstress conditions, precluding any nodulation. In contrast, an S. meliloti strain (SmgshB) with gshB, encoding the enzyme involved in the second step in GSH synthesis, deleted was able to grow, indicating that gamma-glutamylcysteine, the dipeptide intermediate, can partially substitute for GSH. However, the SmgshB strain showed a delayed-nodulation phenotype coupled to a 75% reduction in the nitrogen fixation capacity. This phenotype was linked to abnormal nodule development. Both the SmgshA and SmgshB mutant strains exhibited higher catalase activity than the wild-type S. meliloti strain, suggesting that both mutant strains are under oxidative stress. Taken together, these results show that GSH plays a critical role in the growth of S. meliloti and during its interaction with the plant partner.


Asunto(s)
Glutatión/fisiología , Sinorhizobium meliloti/crecimiento & desarrollo , Simbiosis , Catalasa/metabolismo , Dipéptidos/metabolismo , Peróxido de Hidrógeno/metabolismo , Sinorhizobium meliloti/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA