Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(6): 1912-1926, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419526

RESUMEN

Synthetic mRNA is currently produced in standardized in vitro transcription systems. However, this one-size-fits-all approach has associated drawbacks in supply chain shortages, high reagent costs, complex product-related impurity profiles, and limited design options for molecule-specific optimization of product yield and quality. Herein, we describe for the first time development of an in vivo mRNA manufacturing platform, utilizing an Escherichia coli cell chassis. Coordinated mRNA, DNA, cell and media engineering, primarily focussed on disrupting interactions between synthetic mRNA molecules and host cell RNA degradation machinery, increased product yields >40-fold compared to standard "unengineered" E. coli expression systems. Mechanistic dissection of cell factory performance showed that product mRNA accumulation levels approached theoretical limits, accounting for ~30% of intracellular total RNA mass, and that this was achieved via host-cell's reallocating biosynthetic capacity away from endogenous RNA and cell biomass generation activities. We demonstrate that varying sized functional mRNA molecules can be produced in this system and subsequently purified. Accordingly, this study introduces a new mRNA production technology, expanding the solution space available for mRNA manufacturing.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , ARN Mensajero , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Mensajero/genética , Ingeniería Metabólica/métodos
2.
Biotechnol J ; 19(6): e2400012, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031865

RESUMEN

All mRNA products are currently manufactured in in vitro transcription (IVT) reactions that utilize single-subunit RNA polymerase (RNAP) biocatalysts. Although it is known that discrete polymerases exhibit highly variable bioproduction phenotypes, including different relative processivity rates and impurity generation profiles, only a handful of enzymes are generally available for mRNA biosynthesis. This limited RNAP toolbox restricts strategies to design and troubleshoot new mRNA manufacturing processes, which is particularly undesirable given the continuing diversification of mRNA product lines toward larger and more complex molecules. Herein, we describe development of a high-throughput RNAP screening platform, comprising complementary in silico and in vitro testing modules, that enables functional characterization of large enzyme libraries. Utilizing this system, we identified eight novel sequence-diverse RNAPs, with associated active cognate promoters, and subsequently validated their performance as recombinant enzymes in IVT-based mRNA production processes. By increasing the number of available characterized functional RNAPs by more than 130% and providing a platform to rapidly identify further potentially useful enzymes, this work significantly expands the RNAP biocatalyst solution space for mRNA manufacture, thereby enhancing the capability for application-specific and molecule-specific optimization of both product yield and quality.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , ARN Mensajero , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Biocatálisis , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA