Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Am Chem Soc ; 146(3): 2248-2256, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214667

RESUMEN

Photo(electro)catalysis with semiconducting nanoparticles (NPs) is an attractive approach to convert abundant but intermittent renewable electricity into stable chemical fuels. However, our understanding of the microscopic processes governing the performance of the materials has been hampered by the lack of operando characterization techniques with sufficient lateral resolution. Here, we demonstrate that the local surface potentials of NPs of bismuth vanadate (BiVO4) and their response to illumination differ between adjacent facets and depend strongly on the pH of the ambient electrolyte. The isoelectric points of the dominant {010} basal plane and the adjacent {110} side facets differ by 1.5 pH units. Upon illumination, both facets accumulate positive charges and display a maximum surface photoresponse of +55 mV, much stronger than reported in the literature for the surface photo voltage of BiVO4 NPs in air. High resolution images reveal the presence of numerous surface defects ranging from vacancies of a few atoms, to single unit cell steps, to microfacets of variable orientation and degree of disorder. These defects typically carry a highly localized negative surface charge density and display an opposite photoresponse compared to the adjacent facets. Strategies to model and optimize the performance of photocatalyst NPs, therefore, require an understanding of the distribution of surface defects, including the interaction with ambient electrolyte.

2.
Faraday Discuss ; 247(0): 252-267, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37466106

RESUMEN

Electrochemical decarboxylation of acetic acid on boron-doped-diamond (BDD) electrodes was studied as a possible means to decrease the acidity of pyrolysis oil. It is shown that decarboxylation occurs without the competitive oxygen evolution reaction (OER) on BDD electrodes to form methanol and methyl acetate by consecutive reaction of hydroxyl radicals with acetic acid. The performance is little affected by the applied current density (and associated potential), concentration, and the pH of the solution. At current densities above 50 mA cm-2, faradaic efficiencies (FEs) of 90% towards the decarboxylation products are obtained, confirmed by in situ electrochemical mass spectrometry (ECMS) investigation showing only small amounts of oxygen formed by water oxidation. Using platinum-modified BDD electrodes, it is shown that selectivity to ethane, the Kolbe product, strongly depends on the shape and geometry of the platinum particles. Using nano-thorn-like Pt particles, a faradaic efficiency of approx. 40% towards ethane can be obtained, whereas 3D porous platinum nanoparticles showed high selectivity towards the OER. Using thin platinum layers, a high FE of >70% towards ethane was obtained, which is thickness-independent at layer thicknesses above 20 nm. Comparison with other substrates revealed that BDD is an ideal support for Pt functionalisation, giving advantages of stability and high-value-product formation (ethane and methanol). In short, this work provides guidelines for electrode fabrication in the context of the electrochemical upgrading of biomass feedstocks by acid decarboxylation.

3.
J Am Chem Soc ; 144(24): 11010-11018, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35675488

RESUMEN

Photoelectrochemical (PEC) cells containing photocathodes based on functionalized NiO show a promising solar-to-hydrogen conversion efficiency. Here, we present mechanistic understanding of the photoinduced charge transfer processes occurring at the photocathode/electrolyte interface. We demonstrate via advanced photophysical characterization that surface hydroxyl groups formed at the NiO/water interface not only promote photoinduced hole transfer from the dye into NiO, but also enhance the rate of charge recombination. Both processes are significantly slower when the photocathode is exposed to dry acetonitrile, while in air an intermediate behavior is observed. These data suggest that highly efficient devices can be developed by balancing the quantity of surface hydroxyl groups of NiO, and presumably of other p-type metal oxide semiconductors.

4.
Environ Sci Technol ; 53(15): 8725-8735, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31282148

RESUMEN

We evaluated electrochemical degradation (ECD) and photocatalytic degradation (PCD) technologies for saline water purification, with a focus on rate comparison and formation and degradation of chlorinated aromatic intermediates using the same non-chlorinated parent compound, 4-ethylphenol (4EP). At 15 mA·cm-2, and in the absence of chloride (0.6 mol·L-1 NaNO3 was used as supporting electrolyte), ECD resulted in an apparent zero-order rate of 30 µmol L-1·h-1, whereas rates of ∼300 µmol L-1·h-1 and ∼3750 µmol L-1·h-1 were computed for low (0.03 mol·L-1) and high (0.6 mol·L-1) NaCl concentration, respectively. For PCD, initial rates of ∼330 µmol L-1·h-1 and 205 µmol L-1·h-1 were found for low and high NaCl concentrations, at a photocatalyst (TiO2) concentration of 0.5 g·L-1, and illumination at λmax ≈ 375 nm, with an intensity ∼0.32 mW·cm-2. In the chlorine mediated ECD approach, significant quantities of free chlorine (hypochlorite, Cl2) and chlorinated hydrocarbons were formed in solution, while photocatalytic degradation did not show the formation of free chlorine, nor chlorine-containing intermediates, and resulted in better removal of non-purgeable hydrocarbons than ECD. The origin of the minimal formation of free chlorine and chlorinated compounds in photocatalytic degradation is discussed based on photoelectrochemical results and existing literature, and explained by a chloride-mediated surface-charge recombination mechanism.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloruros , Cloro , Fenoles
5.
Chem Rev ; 116(23): 14587-14619, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960266

RESUMEN

In this review, for a variety of metals and semiconductors, an attempt is made to generalize observations in the literature on the effect of process conditions applied during photodeposition on (i) particle size distributions, (ii) oxidation states of the metals obtained, and (iii) consequences for photocatalytic activities. Process parameters include presence or absence of (organic) sacrificial agents, applied pH, presence or absence of an air/inert atmosphere, metal precursor type and concentration, and temperature. Most intensively reviewed are studies concerning (i) TiO2; (ii) ZnO, focusing on Ag deposition; (iii) WO3, with a strong emphasis on the photodeposition of Pt; and (iv) CdS, again with a focus on deposition of Pt. Furthermore, a detailed overview is given of achievements in structure-directed photodeposition, which could ultimately be employed to obtain highly effective photocatalytic materials. Finally, we provide suggestions for improvements in description of the photodeposition methods applied when included in scientific papers.

6.
Nanotechnology ; 28(29): 295401, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28649964

RESUMEN

Solar-to-hydrogen conversion by water splitting in photoelectrochemical cells (PECs) is a promising approach to alleviate problems associated with intermittency in solar energy supply and demand. Several interfacial resistances in photoelectrodes limit the performance of such cells, while the properties of interfaces are not easy to analyze in situ. We applied photoconductive-AFM to analyze the performance of WO3/p+n Si photoanodes, containing an ultra-thin metal interface of either Au or Pt. The Au interface consisted of Au nanoparticles with well-ordered interspacing, while Pt was present in the form of a continuous film. Photoconductive-AFM data show that upon illumination significantly larger currents are measured for the WO3/p+n Si anode equipped with the Au interface, as compared to the WO3/p+n Si anode with the Pt interface, in agreement with the better performance of the former electrode in a photoelectrochemical cell. The remarkable performance of the Au-containing electrode is proposed to be the result of favorable electron-hole recombination rates induced by the Au nanoparticles in a plasmon resonance excited state.

7.
J Am Chem Soc ; 136(2): 594-7, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24350558

RESUMEN

The photocatalytic reduction of CO2 by water vapor to produce light hydrocarbons was studied over a series of catalysts consisting of variable loading of Ti incorporated in TUD-1 mesoporous silica, either modified by ZnO nanoparticles or isolated Cr-sites. Unexpectedly, the performance of ZnO-Ti-TUD-1 and Cr-Ti-TUD-1 was inferior to the parent Ti-TUD-1. An explanation can be found in experiments on the photocatalytic degradation of a mixture of hydrocarbons (i.e., CH4, C2H4, C2H6, C3H6, and C3H8) under the same illumination conditions. Ti-TUD-1 exhibits the poorest activity in hydrocarbon degradation, while ZnO-Ti-TUD-1 and Cr-Ti-TUD-1 showed very significant degradation rates. This study clearly demonstrates the importance of evaluating hydrocarbon conversion over photocatalysts active in converting CO2 to hydrocarbons (in batch reactors).

8.
Anal Chem ; 86(15): 7612-7, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24983129

RESUMEN

We present a novel high throughput photocatalyst efficiency assessment method based on 96-well microplates and UV-vis spectroscopy. We demonstrate the reproducibility of the method using methyl orange (MO) decomposition and compare kinetic data obtained with those provided in the literature for larger conventional photoreactors. To demonstrate the capabilities of the method, we rapidly screened the effects of salts, potentially present in wastewater, on kinetic rates of MO decomposition and briefly discuss the obtained data on the basis of existing literature.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Procesos Fotoquímicos , Purificación del Agua/métodos , Catálisis , Cinética
9.
Phys Chem Chem Phys ; 16(24): 12194-201, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24817571

RESUMEN

The catalytic activity and hydrocarbon selectivity in electrochemical carbon dioxide (CO2) reduction on cuprous oxide (Cu2O) derived copper nanoparticles is discussed. Cuprous oxide films with [100], [110] and [111] orientation and variable thickness were electrodeposited by reduction of copper(ii) lactate on commercially available copper plates. After initiation of the electrochemical CO2 reduction by these oxide structures, the selectivity of the process was found to largely depend on the parent Cu2O film thickness, rather than on the initial crystal orientation. Starting with thin Cu2O films, besides CO and hydrogen, selective formation of ethylene is observed with very high ethylene-to-methane ratios (∼8 to 12). In addition to these products, thicker Cu2O films yield a remarkably large amount of ethane. Long term Faradaic efficiency analysis of hydrocarbons shows no sign of deactivation of the electrodes after 5 hours of continuous experiment. Online mass spectroscopy studies combined with X-ray diffraction data suggest the reduction of the Cu2O films in the presence of CO2, generating a nanoparticulate Cu morphology, prior to the production of hydrogen, CO, and hydrocarbons. Optimizing coverage, number density and size of the copper nanoparticles, as well as local surface pH, may allow highly selective formation of the industrially important product ethylene.

10.
Angew Chem Int Ed Engl ; 53(46): 12476-9, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25056519

RESUMEN

The photodeposition of Pt nanoparticles from [PtCl6 ](2-) on platelike WO3 crystals occurs preferentially on the small, subordinate facets. Rather than the often-used explanation of preferred light-induced charge migration, we propose that this phenomenon is due to differences in the intrinsic surface charges of WO3 facets exposed to water; thus, the dark sorption of [PtCl6 ](2-) on positively charged facets/edges is preferred. This conclusion is based on 1) (dark) impregnation studies, which showed Pt deposition to also be facet-specific, and 2) aqueous-phase AFM studies, which suggest intrinsic surface charges to be in agreement with sorption-based Pt distributions.

11.
ChemSusChem ; 17(2): e202300800, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37706622

RESUMEN

P-type metal oxides, and in particular NiO, are typically used as hole accepting layers in dye-sensitized photocathodes. Delafossites (CuMO2 ) with M=B, Al, Cr or Ga have recently been proposed as attractive substitutes for NiO, with theoretically a higher hole mobility than NiO, therefore allowing a higher efficiency when the photocathode is applied in solar to fuel devices. We have experimentally validated the photoelectrochemical performance of photocathodes consisting of nanoporous CuBO2 (CBO) on Fluorine-doped Tin Oxide substrates, photosensitized with a light absorbing P1 dye. Femtosecond transient absorption and time-resolved photoluminescence studies show that light-induced hole injection occurs from the P1 dye into the CBO in a few ps, comparable to the time constant observed for NiO-based photocathodes. Importantly, the CBO-based photocathode shows significantly slower charge recombination than the NiO-based analogue. These results illustrate the promise of CBO as a p-type semiconductor in solar energy conversion devices.

12.
ACS Catal ; 14(18): 13867-13876, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39324054

RESUMEN

By deployment of rapid-scan (second time scale) electrochemical FT-IR reflection-absorption spectroscopy, we studied the reduction of CO2 in 0.1 M Na2SO4 in deuterated water at a pD of 3.7. We report on the impact of dynamic changes in the bicarbonate equilibrium concentration in the vicinity of a polycrystalline Cu electrode, induced by step changes in applied electrode potential. We correlate these changes in interfacial composition and concentrations of dissolved species to the formation rate of formate, and provide evidence for the following conclusions: (i) the kinetics for the conversion of dissolved CO2 to formate (formic acid) are fast, (ii) bicarbonate is also converted to formate, but with less favorable kinetics, and (iii) carbonate does not yield any formate. These results reveal that formate formation requires (mildly) acidic conditions at the interface for CO2 to undergo a proton-coupled conversion step, and we postulate that bicarbonate reduction to formate is driven by catalytic hydrogenation via in situ formed H2. Interestingly CO was not observed, suggesting that the kinetics of the CO2 to CO reaction are significantly less favorable than formate formation under the experimental conditions (pH and applied potential). We also analyzed the feasibility of pulsed electrolysis to enhance the (average) rate of formation of formate. While a short positive potential pulse enhances the CO2 concentration, this also leads to the formation of basic copper carbonates, resulting in electrode deactivation. These observations demonstrate the potential of rapid-scan EC-IRRAS to elucidate the mechanisms and kinetics of electrochemical reactions, offering valuable insights for optimizing catalyst and electrolyte performance and advancing CO2 reduction technologies.

13.
ACS Appl Mater Interfaces ; 16(4): 5217-5224, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38235571

RESUMEN

In the present study, we investigate the effects of the applied external potential on a dye-sensitized NiO photocathode by time-resolved photoluminescence and femtosecond transient absorption spectroscopy under operating conditions. Instead of the anticipated acceleration of photoinduced hole injection from dye into NiO at a more negative applied potential, we observe that both hole injection and charge recombination are slowed down. We cautiously assign this effect to a variation in OH- ion concentration in the inner Helmholtz plane of the electrochemical double layer with applied potential, warranting further investigation for the realization of efficient solar fuel devices.

14.
Adv Sci (Weinh) ; 11(40): e2403454, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39188112

RESUMEN

The donor-acceptor (D-A) dye 4-(bis-4-(5-(2,2-dicyano-vinyl)-thiophene-2-yl)-phenyl-amino)-benzoic acid (P1) has been frequently used to functionalize NiO photocathodes and induce photoelectrochemical reduction of protons when coupled to a suitable catalyst. Photoinduced twisting of the P1 dye is steered on NiO by co-adsorption of tetradecanoic acid (C14, myristic acid (MA)). Density Functional Theory and time-resolved photoluminescence studies confirm that twisting lowers the energy levels of the photoexcited D-A dye. The apolar environment provided by the MA suppresses photoinduced D-A twisting, retards charge recombination following photoinduced charge separation between P1 and NiO, and provides a larger electrochemical potential increasing the photocurrent. Very interestingly, co-adsorption of MA induces H2 evolution upon photoexcitation without the presence of an H2 evolution catalyst. Based on prior art, the formation of H2 is assigned to the dissolution of Ni2+, followed by reduction and re-deposition of Ni nanoparticles acting as the catalytically active site. It propose that only excited P1 with suppressed twisting provides the sufficient electrochemical potential to induce deposition of Ni nanoparticles. The work illustrates the importance of understanding the effects of photoinduced intramolecular twisting and highlights the promise of designing twisting-limited D-A dyes to create efficient solar fuel devices.

15.
J Phys Chem C Nanomater Interfaces ; 128(38): 16020-16031, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39355014

RESUMEN

We used in situ X-ray absorption spectroscopy (XAS) to investigate the composition-performance correlation of Ni-SrTiO3 photocatalysts active for water splitting. After preparation and exposure to ambient conditions, the Ni particles on SrTiO3 consist of Ni(0) and Ni(II) phases, with a 4:1 at % ratio, in a metal/oxide core/shell configuration, as confirmed by XPS and TEM-EDX. In situ XAS experiments using an aqueous slurry of the Ni-SrTiO3 photocatalyst and simultaneous continuous exposure to 365 nm light with a power density of 100 mW cm-2 and the X-rays do not reveal significant changes in oxidation state of the Ni particles. Contrarily, when the X-rays are discontinuously applied, UV excitation leads to oxidation of a significant fraction of Ni(0) to Ni(II), specifically to NiO and Ni(OH)2 phases, along with cocatalyst restructuring. Ni dissolution or oxidation to higher valence states (e.g., Ni(III)) was not observed. The UV light-induced oxidation of Ni(0) causes the hydrogen evolution rate to drop to similar rates as observed for pristine SrTiO3, suggesting that Ni(0) is the active phase for H2 generation. Our results underscore the importance of assessing the effects of (continuous) X-ray exposure to (photo)catalyst-containing aqueous slurries during in situ XAS experiments, which can significantly influence the observation of compositional and structural changes in the (photo)catalysts. We ascribe this to X-ray induced water photolysis and formation of free electrons, which in this study quench SrTiO3 photoholes and prevent Ni oxidation.

16.
Anal Chem ; 85(1): 33-8, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23210911

RESUMEN

Attenuated total reflection-infrared (ATR-IR) spectroscopy is increasingly used to characterize solids and liquids as well as (catalytic) chemical conversion. Here we demonstrate that a piece of silicon wafer cut by a dicing machine or cleaved manually can be used as disposable internal reflection element (IRE) without the need for polishing and laborious edge preparation. Technical aspects, fundamental differences, and pros and cons of these novel disposable IREs and commercial IREs are discussed. The use of a crystal (the Si wafer) in a disposable manner enables simultaneous preparation and analysis of substrates and application of ATR spectroscopy in high temperature processes that may lead to irreversible interaction between the crystal and the substrate. As representative application examples, the disposable IREs were used to study high temperature thermal decomposition and chemical changes of polyvinyl alcohol (PVA) in a titania (TiO(2)) matrix and assemblies of 65-450 nm thick polystyrene (PS) films.

17.
J Phys Chem C Nanomater Interfaces ; 127(29): 14353-14362, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37529662

RESUMEN

Despite the promising performance of Ru nanoparticles or nanoclusters on nanostructured TiO2 in photocatalytic and photothermal reactions, a mechanistic understanding of the photophysics is limited. The aim of this study is to uncover the nature of light-induced processes in Ru/TiO2 and the role of UV versus visible excitation by time-resolved photoluminescence (PL) spectroscopy. The PL at a 267 nm excitation is predominantly due to TiO2, with a minor contribution of the Ru nanoclusters. Relative to TiO2, the PL of Ru/TiO2 following a 267 nm excitation is significantly blue-shifted, and the bathochromic shift with time is smaller. We show by global analysis of the spectrotemporal PL behavior that for both TiO2 and Ru/TiO2 the bathochromic shift with time is likely caused by the diffusion of electrons from the TiO2 bulk toward the surface. During this directional motion, electrons may recombine (non)radiatively with relatively immobile hole polarons, causing the PL spectrum to red-shift with time following excitation. The blue-shifted PL spectra and smaller bathochromic shift with time for Ru/TiO2 relative to TiO2 indicate surface PL quenching, likely due to charge transfer from the TiO2 surface into the Ru nanoclusters. When deposited on SiO2 and excited at 532 nm, Ru shows a strong emission. The PL of Ru when deposited on TiO2 is completely quenched, demonstrating interfacial charge separation following photoexcitation of the Ru nanoclusters with a close to unity quantum yield. The nature of the charge-transfer phenomena is discussed, and the obtained insights indicate that Ru nanoclusters should be deposited on semiconducting supports to enable highly effective photo(thermal)catalysis.

18.
J Phys Chem C Nanomater Interfaces ; 127(48): 23312-23322, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38090136

RESUMEN

Quasi-two-dimensional (2D) metal halide perovskites (MHPs) are promising photovoltaic (PV) materials because of their impressive optical and optoelectronic properties and improved stability compared to their 3D counterparts. The presence of domains with varying numbers of inorganic layers between the organic spacers (n-phases), each with different bandgaps, makes the photoinduced carrier dynamics in films of these materials complex and intriguing. Existing interpretations of the ultrafast femto- or picosecond spectroscopy data have been inconsistent, most of them focusing either on exciton/charge transfer from low-n to high-n phases or on hot carrier cooling, but not combined. Here, we present a comprehensive study of the carrier dynamics in the Dion-Jacobson type (PDMA)(MA)(n-1)PbnI(3n+1) (PDMA = 1,4-phenylenedimethylammonium, MA = methylammonium) perovskite, stoichiometrically prepared as ⟨n⟩ = 5. Within the film, a coexistence of various n-phases is observed instead of solely the n = 5 phase, resulting in an interesting energy landscape for the motion of excitons and charge carriers. We disentangle hot carrier cooling from exciton transfer between low-n and high-n phases using ultrafast time-resolved photoluminescence and transient absorption spectroscopy. Photophysical modeling by target analysis shows that carrier cooling occurring on a subpicosecond time scale is followed by exciton transfer from low-n into high-n phases in ca. 35 ps when the film is excited by 532 or 490 nm light. Carriers in the high-n phase are much longer lived and decay in a ns time window. Overall, our results provide a comprehensive understanding of the photophysics of this material, which helps to optimize quasi-2D MHP materials for a new generation of PV devices.

19.
J Phys Chem B ; 127(35): 7581-7589, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37611240

RESUMEN

The antenna complex of green sulfur bacteria, the chlorosome, is one of the most efficient supramolecular systems for efficient long-range exciton transfer in nature. Femtosecond transient absorption experiments provide new insight into how vibrationally induced quantum overlap between exciton states supports highly efficient long-range exciton transfer in the chlorosome of Chlorobium tepidum. Our work shows that excitation energy is delocalized over the chlorosome in <1 ps at room temperature. The following exciton transfer to the baseplate occurs in ∼3 to 5 ps, in line with earlier work also performed at room temperature, but significantly faster than at the cryogenic temperatures used in previous studies. This difference can be attributed to the increased vibrational motion at room temperature. We observe a so far unknown impact of the excitation photon energy on the efficiency of this process. This dependency can be assigned to distinct optical domains due to structural disorder, combined with an exciton trapping channel competing with exciton transfer toward the baseplate. An oscillatory transient signal damped in <1 ps has the highest intensity in the case of the most efficient exciton transfer to the baseplate. These results agree well with an earlier computational finding of exciton transfer driven by low-frequency rotational motion of molecules in the chlorosome. Such an exciton transfer process belongs to the quantum coherent regime, for which the Förster theory for intermolecular exciton transfer does not apply. Our work hence strongly indicates that structural flexibility is important for efficient long-range exciton transfer in chlorosomes.

20.
Anal Chem ; 84(7): 3132-7, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22339536

RESUMEN

We present a micromachined silicon attenuated total reflection-infrared (ATR-IR) crystal with integrated nanofluidic glass channels which enables infrared spectroscopic studies with only 71 nL sample volume. Because of the short path length through silicon, the system allows IR spectroscopy down to 1200 cm(-1), which covers the typical fingerprint region of most organic compounds. To demonstrate proof-of-principle, the chip was used to study a Knoevenagel condensation reaction between malononitrile and p-anisaldehyde catalyzed by different concentrations of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in solvent acetonitrile. By in situ measurement, it was demonstrated for the first time that at certain concentrations of DBU, reaction intermediates become stabilized, an effect that slows down or even stops the reaction. This is thought to be caused by increased ionic character of the solvent, in which protonated DBU stabilizes the intermediates. This clearly demonstrates that infrared mechanistic studies of chemical reactions are feasible in volumes as little as 71 nL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA