Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Sci Technol ; 58(19): 8239-8250, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690747

RESUMEN

Sequencing human viruses in wastewater is challenging due to their low abundance compared to the total microbial background. This study compared the impact of four virus concentration/extraction methods (Innovaprep, Nanotrap, Promega, and Solids extraction) on probe-capture enrichment for human viruses followed by sequencing. Different concentration/extraction methods yielded distinct virus profiles. Innovaprep ultrafiltration (following solids removal) had the highest sequencing sensitivity and richness, resulting in the successful assembly of several near-complete human virus genomes. However, it was less sensitive in detecting SARS-CoV-2 by digital polymerase chain reaction (dPCR) compared to Promega and Nanotrap. Across all preparation methods, astroviruses and polyomaviruses were the most highly abundant human viruses, and SARS-CoV-2 was rare. These findings suggest that sequencing success can be increased using methods that reduce nontarget nucleic acids in the extract, though the absolute concentration of total extracted nucleic acid, as indicated by Qubit, and targeted viruses, as indicated by dPCR, may not be directly related to targeted sequencing performance. Further, using broadly targeted sequencing panels may capture viral diversity but risks losing signals for specific low-abundance viruses. Overall, this study highlights the importance of aligning wet lab and bioinformatic methods with specific goals when employing probe-capture enrichment for human virus sequencing from wastewater.


Asunto(s)
Aguas Residuales , Aguas Residuales/virología , Humanos , Virus/aislamiento & purificación , SARS-CoV-2 , Genoma Viral
2.
Microbiol Spectr ; 11(6): e0252023, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37874143

RESUMEN

IMPORTANCE: Microbial contamination in combat wounds can lead to opportunistic infections and adverse outcomes. However, current microbiological detection has a limited ability to capture microbial functional genes. This work describes the application of targeted metagenomic sequencing to profile wound bioburden and capture relevant wound-associated signatures for clinical utility. Ultimately, the ability to detect such signatures will help guide clinical decisions regarding wound care and management and aid in the prediction of wound outcomes.


Asunto(s)
Metagenoma , Heridas Relacionadas con la Guerra , Infección de Heridas , Humanos , Infección de Heridas/diagnóstico , Infección de Heridas/microbiología , Heridas Relacionadas con la Guerra/diagnóstico , Heridas Relacionadas con la Guerra/microbiología
3.
PLoS One ; 17(12): e0278543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36455065

RESUMEN

Co-infections or secondary infections with SARS-CoV-2 have the potential to affect disease severity and morbidity. Additionally, the potential influence of the nasal microbiome on COVID-19 illness is not well understood. In this study, we analyzed 203 residual samples, originally submitted for SARS-CoV-2 testing, for the presence of viral, bacterial, and fungal pathogens and non-pathogens using a comprehensive microarray technology, the Lawrence Livermore Microbial Detection Array (LLMDA). Eighty-seven percent of the samples were nasopharyngeal samples, and 23% of the samples were oral, nasal and oral pharyngeal swabs. We conducted bioinformatics analyses to examine differences in microbial populations of these samples, as a proxy for the nasal and oral microbiome, from SARS-CoV-2 positive and negative specimens. We found 91% concordance with the LLMDA relative to a diagnostic RT-qPCR assay for detection of SARS-CoV-2. Sixteen percent of all the samples (32/203) revealed the presence of an opportunistic bacterial or frank viral pathogen with the potential to cause co-infections. The two most detected bacteria, Streptococcus pyogenes and Streptococcus pneumoniae, were present in both SARS-CoV-2 positive and negative samples. Human metapneumovirus was the most prevalent viral pathogen in the SARS-CoV-2 negative samples. Sequence analysis of 16S rRNA was also conducted to evaluate bacterial diversity and confirm LLMDA results.


Asunto(s)
COVID-19 , Coinfección , Microbiota , Humanos , SARS-CoV-2/genética , ARN Ribosómico 16S/genética , Prueba de COVID-19 , Microbiota/genética
4.
Sci Rep ; 12(1): 13816, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970993

RESUMEN

Battlefield injury management requires specialized care, and wound infection is a frequent complication. Challenges related to characterizing relevant pathogens further complicates treatment. Applying metagenomics to wounds offers a comprehensive path toward assessing microbial genomic fingerprints and could indicate prognostic variables for future decision support tools. Wound specimens from combat-injured U.S. service members, obtained during surgical debridements before delayed wound closure, were subjected to whole metagenome analysis and targeted enrichment of antimicrobial resistance genes. Results did not indicate a singular, common microbial metagenomic profile for wound failure, instead reflecting a complex microenvironment with varying bioburden diversity across outcomes. Genus-level Pseudomonas detection was associated with wound failure at all surgeries. A logistic regression model was fit to the presence and absence of antimicrobial resistance classes to assess associations with nosocomial pathogens. A. baumannii detection was associated with detection of genomic signatures for resistance to trimethoprim, aminoglycosides, bacitracin, and polymyxin. Machine learning classifiers were applied to identify wound and microbial variables associated with outcome. Feature importance rankings averaged across models indicated the variables with the largest effects on predicting wound outcome, including an increase in P. putida sequence reads. These results describe the microbial genomic determinants in combat wound bioburden and demonstrate metagenomic investigation as a comprehensive tool for providing information toward aiding treatment of combat-related injuries.


Asunto(s)
Antiinfecciosos , Enfermedades Musculoesqueléticas , Infección de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Extremidades/lesiones , Humanos , Metagenoma , Metagenómica , Enfermedades Musculoesqueléticas/tratamiento farmacológico , Infección de Heridas/tratamiento farmacológico
5.
Viruses ; 14(12)2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36560780

RESUMEN

Genetic analysis of intra-host viral populations provides unique insight into pre-emergent mutations that may contribute to the genotype of future variants. Clinical samples positive for SARS-CoV-2 collected in California during the first months of the pandemic were sequenced to define the dynamics of mutation emergence as the virus became established in the state. Deep sequencing of 90 nasopharyngeal samples showed that many mutations associated with the establishment of SARS-CoV-2 globally were present at varying frequencies in a majority of the samples, even those collected as the virus was first detected in the US. A subset of mutations that emerged months later in consensus sequences were detected as subconsensus members of intra-host populations. Spike mutations P681H, H655Y, and V1104L were detected prior to emergence in variant genotypes, mutations were detected at multiple positions within the furin cleavage site, and pre-emergent mutations were identified in the nucleocapsid and the envelope genes. Because many of the samples had a very high depth of coverage, a bioinformatics pipeline, "Mappgene", was established that uses both iVar and LoFreq variant calling to enable identification of very low-frequency variants. This enabled detection of a spike protein deletion present in many samples at low frequency and associated with a variant of concern.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , SARS-CoV-2/genética , Mutación , Biología Computacional , Glicoproteína de la Espiga del Coronavirus/genética
6.
Viruses ; 14(9)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146835

RESUMEN

Wastewater-based epidemiology (WBE) is a popular tool for the early indication of community spread of infectious diseases. WBE emerged as an effective tool during the COVID-19 pandemic and has provided meaningful information to minimize the spread of infection. Here, we present a combination of analyses using the correlation of viral gene copies with clinical cases, sequencing of wastewater-derived RNA for the viral mutants, and correlative analyses of the viral gene copies with the bacterial biomarkers. Our study provides a unique platform for potentially using the WBE-derived results to predict the spread of COVID-19 and the emergence of new variants of concern. Further, we observed a strong correlation between the presence of SARS-CoV-2 and changes in the microbial community of wastewater, particularly the significant changes in bacterial genera belonging to the families of Lachnospiraceae and Actinomycetaceae. Our study shows that microbial biomarkers could be utilized as prediction tools for future infectious disease surveillance and outbreak responses. Overall, our comprehensive analyses of viral spread, variants, and novel bacterial biomarkers will add significantly to the growing body of literature on WBE and COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Biomarcadores , COVID-19/epidemiología , Humanos , Pandemias , ARN , ARN Viral , SARS-CoV-2/genética , Aguas Residuales
7.
Cancer Res ; 66(21): 10541-7, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17079477

RESUMEN

Epidemiologic evidence indicates that exposure to heterocyclic amines in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of heterocyclic amines, which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of heterocyclic amine bioactivation in humans, the most mass abundant heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers where administered a dietary relevant dose of [(14)C]PhIP 48 to 72 hours before surgery to remove colon tumors. Urine was collected for 24 hours after dosing for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All 10 subjects were phenotyped for cytochrome P4501A2 (CYP1A2), N-acetyltransferase 2, and sulfotransferase 1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N(2)-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N(2)-glucuronide had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N(2)-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.


Asunto(s)
Carcinógenos/metabolismo , Colon/metabolismo , Aductos de ADN/orina , Imidazoles/metabolismo , Arilamina N-Acetiltransferasa/fisiología , Arilsulfotransferasa/fisiología , Citocromo P-450 CYP1A2/fisiología , Glucuronosiltransferasa/fisiología , Humanos
8.
Virus Evol ; 2(1): vew016, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28694998

RESUMEN

To end the largest known outbreak of Ebola virus disease (EVD) in West Africa and to prevent new transmissions, rapid epidemiological tracing of cases and contacts was required. The ability to quickly identify unknown sources and chains of transmission is key to ending the EVD epidemic and of even greater importance in the context of recent reports of Ebola virus (EBOV) persistence in survivors. Phylogenetic analysis of complete EBOV genomes can provide important information on the source of any new infection. A local deep sequencing facility was established at the Mateneh Ebola Treatment Centre in central Sierra Leone. The facility included all wetlab and computational resources to rapidly process EBOV diagnostic samples into full genome sequences. We produced 554 EBOV genomes from EVD cases across Sierra Leone. These genomes provided a detailed description of EBOV evolution and facilitated phylogenetic tracking of new EVD cases. Importantly, we show that linked genomic and epidemiological data can not only support contact tracing but also identify unconventional transmission chains involving body fluids, including semen. Rapid EBOV genome sequencing, when linked to epidemiological information and a comprehensive database of virus sequences across the outbreak, provided a powerful tool for public health epidemic control efforts.

9.
PLoS One ; 3(5): e2163, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18478124

RESUMEN

Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known or novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples.


Asunto(s)
Bacterias/patogenicidad , Análisis de Secuencia por Matrices de Oligonucleótidos , Virulencia/genética , Disparidad de Par Base , Secuencia de Bases , Cartilla de ADN , Sondas de ADN , ADN Bacteriano/análisis , ADN Bacteriano/genética , Hibridación de Ácido Nucleico , Sensibilidad y Especificidad , Termodinámica
10.
J Clin Microbiol ; 42(12): 5472-6, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15583268

RESUMEN

We built a system to guide decisions regarding the amount of genomic sequencing required to develop diagnostic DNA signatures, which are short sequences that are sufficient to uniquely identify a viral species. We used our existing DNA diagnostic signature prediction pipeline, which selects regions of a target species genome that are conserved among strains of the target (for reliability, to prevent false negatives) and unique relative to other species (for specificity, to avoid false positives). We performed simulations, based on existing sequence data, to assess the number of genome sequences of a target species and of close phylogenetic relatives (near neighbors) that are required to predict diagnostic signature regions that are conserved among strains of the target species and unique relative to other bacterial and viral species. For DNA viruses such as variola (smallpox), three target genomes provide sufficient guidance for selecting species-wide signatures. Three near-neighbor genomes are critical for species specificity. In contrast, most RNA viruses require four target genomes and no near-neighbor genomes, since lack of conservation among strains is more limiting than uniqueness. Severe acute respiratory syndrome and Ebola Zaire are exceptional, as additional target genomes currently do not improve predictions, but near-neighbor sequences are urgently needed. Our results also indicate that double-stranded DNA viruses are more conserved among strains than are RNA viruses, since in most cases there was at least one conserved signature candidate for the DNA viruses and zero conserved signature candidates for the RNA viruses.


Asunto(s)
Secuencia de Bases , Virus ADN/clasificación , Genoma Viral , Virus ARN/clasificación , Virosis/diagnóstico , Virus ADN/genética , Humanos , Método de Montecarlo , Virus ARN/genética , Especificidad de la Especie , Virosis/virología
11.
Brief Bioinform ; 4(2): 133-49, 2003 06.
Artículo en Inglés | MEDLINE | ID: mdl-12846395

RESUMEN

Rapid advances in the genomic sequencing of bacteria and viruses over the past few years have made it possible to consider sequencing the genomes of all pathogens that affect humans and the crops and livestock upon which our lives depend. Recent events make it imperative that full genome sequencing be accomplished as soon as possible for pathogens that could be used as weapons of mass destruction or disruption. This sequence information must be exploited to provide rapid and accurate diagnostics to identify pathogens and distinguish them from harmless near-neighbours and hoaxes. The Chem-Bio Non-Proliferation (CBNP) programme of the US Department of Energy (DOE) began a large-scale effort of pathogen detection in early 2000 when it was announced that the DOE would be providing bio-security at the 2002 Winter Olympic Games in Salt Lake City, Utah. Our team at the Lawrence Livermore National Lab (LLNL) was given the task of developing reliable and validated assays for a number of the most likely bioterrorist agents. The short timeline led us to devise a novel system that utilised whole-genome comparison methods to rapidly focus on parts of the pathogen genomes that had a high probability of being unique. Assays developed with this approach have been validated by the Centers for Disease Control (CDC). They were used at the 2002 Winter Olympics, have entered the public health system, and have been in continual use for non-publicised aspects of homeland defence since autumn 2001. Assays have been developed for all major threat list agents for which adequate genomic sequence is available, as well as for other pathogens requested by various government agencies. Collaborations with comparative genomics algorithm developers have enabled our LLNL team to make major advances in pathogen detection, since many of the existing tools simply did not scale well enough to be of practical use for this application. It is hoped that a discussion of a real-life practical application of comparative genomics algorithms may help spur algorithm developers to tackle some of the many remaining problems that need to be addressed. Solutions to these problems will advance a wide range of biological disciplines, only one of which is pathogen detection. For example, exploration in evolution and phylogenetics, annotating gene coding regions, predicting and understanding gene function and regulation, and untangling gene networks all rely on tools for aligning multiple sequences, detecting gene rearrangements and duplications, and visualising genomic data. Two key problems currently needing improved solutions are: (1) aligning incomplete, fragmentary sequence (eg draft genome contigs or arbitrary genome regions) with both complete genomes and other fragmentary sequences; and (2) ordering, aligning and visualising non-colinear gene rearrangements and inversions in addition to the colinear alignments handled by current tools.


Asunto(s)
Bioterrorismo , Genómica/métodos , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Genes Bacterianos , Genes Virales , Genoma , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína , Alineación de Secuencia , Programas Informáticos , Estados Unidos , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA