Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Multisens Res ; : 1-18, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209316

RESUMEN

Our ability to maintain our balance plays a pivotal role in day-to-day activities. This ability is believed to be the result of interactions between several sensory modalities including vision and proprioception. Past research has revealed that different aspects of vision including relative visual motion (i.e., sensed motion of the visual field due to head motion), which can be manipulated by changing the viewing distance between the individual and the predominant visual cues, have an impact on balance. However, only a small number of studies have examined this in the context of virtual reality, and none examined the impact of proprioceptive manipulations for viewing distances greater than 3.5 m. To address this, we conducted an experiment in which 25 healthy adults viewed a dartboard in a virtual gymnasium while standing in narrow stance on firm and compliant surfaces. The dartboard distance varied with three different conditions of 1.5 m, 6 m, and 24 m, including a blacked-out condition. Our results indicate that decreases in relative visual motion, due to an increased viewing distance, yield decreased postural stability - but only with simultaneous proprioceptive disruptions.

2.
Multisens Res ; 36(8): 865-890, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37907070

RESUMEN

One's ability to maintain their center of mass within their base of support (i.e., balance) is believed to be the result of multisensory integration. Much of the research in this literature has focused on integration of visual, vestibular, and proprioceptive cues. However, several recent studies have found evidence that auditory cues can impact balance control metrics. In the present study, we sought to better characterize the impact of auditory cues on narrow stance balance task performance with different combinations of visual stimuli (virtual and real world) and support surfaces (firm and compliant). In line with past results, we found that reducing the reliability of proprioceptive cues and visual cues yielded consistent increases in center-of-pressure (CoP) sway metrics, indicating more imbalance. Masking ambient auditory cues with broadband noise led to less consistent findings; however, when effects were observed they were substantially smaller for auditory cues than for proprioceptive and visual cues - and in the opposite direction (i.e., masking ambient auditory cues with broadband noise reduced sway in some situations). Additionally, trials that used virtual and real-world visual stimuli did not differ unless participants were standing on a surface that disrupted proprioceptive cues; disruption of proprioception led to increased CoP sway metrics in the virtual visual condition. This is the first manuscript to report the effect size of different perturbations in this context, and the first to study the impact of acoustically complex environments on balance in comparison to visual and proprioceptive contributions. Future research is needed to better characterize the impact of different acoustic environments on balance.


Asunto(s)
Señales (Psicología) , Vestíbulo del Laberinto , Humanos , Equilibrio Postural , Reproducibilidad de los Resultados , Propiocepción
3.
Biomater Adv ; 140: 213081, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35994930

RESUMEN

Traumatic nerve injuries have limited success in achieving full functional recovery, with current clinical solutions often including implementation of nerve grafts or the use of nerve conduits to guide damaged axons across injury gaps. In search of alternative, and complimentary solutions, piezoelectric biomaterials demonstrate immense potential for tissue engineering applications. Piezoelectric poly(vinylidene fluoride-triflouroethylene) (PVFD-TrFE) scaffolds can be harnessed to non-invasively stimulate and direct function of key peripheral nervous system (PNS) cells in regeneration strategies. In this study, electrospun PVDF-TrFE was characterized, fabricated into a 3D scaffold, and finally rendered bioactive with the incorporation of a cell-secreted, decellularized extracellular matrix (dECM). PVDF-TrFE scaffolds were characterized extensively for piezoelectric capacity, mechanical properties, and cell-material interactions with fibroblasts and Schwann cells. Through functionalization of PVDF-TrFE scaffolds with a native, cell-assembled dECM, the ability to promote cell adhesion and enhanced viability was also demonstrated. Additionally, incorporation of bioactive functionalization improved the assembly of key regenerative ECM proteins and regenerative growth factors. PVDF-TrFE scaffolds were then fabricated into a conduit design that retained key physical, chemical, and piezoelectric properties necessary for PNS repair. This work shows great promise for multi-cue, electrospun biomaterials for regeneration of the PNS in traumatic injury.


Asunto(s)
Polivinilos , Andamios del Tejido , Materiales Biocompatibles/química , Polivinilos/química , Ingeniería de Tejidos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA