Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
3.
Nature ; 523(7558): 53-8, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26106861

RESUMEN

In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN/fisiología , Transducción de Señal , Empalmosomas/metabolismo , Empalme Alternativo/fisiología , Línea Celular , Cromatina/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Activación Enzimática , Humanos , Rayos Ultravioleta
4.
Arch Toxicol ; 94(5): 1655-1671, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32189037

RESUMEN

Damage to cellular macromolecules and organelles by chemical exposure evokes activation of various stress response pathways. To what extent different chemical stressors activate common and stressor-specific pathways is largely unknown. Here, we used quantitative phosphoproteomics to compare the signaling events induced by four stressors with different modes of action: the DNA damaging agent: cisplatin (CDDP), the topoisomerase II inhibitor: etoposide (ETO), the pro-oxidant: diethyl maleate (DEM) and the immunosuppressant: cyclosporine A (CsA) administered at an equitoxic dose to mouse embryonic stem cells. We observed major differences between the stressors in the number and identity of responsive phosphosites and the amplitude of phosphorylation. Kinase motif and pathway analyses indicated that the DNA damage response (DDR) activation by CDDP occurs predominantly through the replication-stress-related Atr kinase, whereas ETO triggers the DDR through Atr as well as the DNA double-strand-break-associated Atm kinase. CsA shares with ETO activation of CK2 kinase. Congruent with their known modes of action, CsA-mediated signaling is related to down-regulation of pathways that control hematopoietic differentiation and immunity, whereas oxidative stress is the most prominent initiator of DEM-modulated stress signaling. This study shows that even at equitoxic doses, different stressors induce distinctive and complex phosphorylation signaling cascades.


Asunto(s)
Proteoma/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Diferenciación Celular , Cisplatino/toxicidad , Roturas del ADN de Doble Cadena , Etopósido/toxicidad , Humanos , Ratones , Estrés Oxidativo , Fosforilación , Transducción de Señal , Inhibidores de Topoisomerasa II
5.
Photochem Photobiol Sci ; 17(12): 1842-1852, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30065996

RESUMEN

Solar ultraviolet (UV) radiation generates bulky photodimers at di-pyrimidine sites that pose stress to cells and organisms by hindering DNA replication and transcription. In addition, solar UV also induces various types of oxidative DNA lesions and single strand DNA breaks. Relieving toxicity and maintenance of genomic integrity are of clinical importance in relation to erythema/edema and diseases such as cancer, neurodegeneration and premature ageing, respectively. Following solar UV radiation, a network of DNA damage response mechanisms triggers a signal transduction cascade to regulate various genome-protection pathways including DNA damage repair, cell cycle control, apoptosis, transcription and chromatin remodeling. The effects of UVC and UVB radiation on cellular DNA are predominantly accounted for by the formation of photodimers at di-pyrimidine sites. These photodimers are mutagenic: UVC, UVB and also UVA radiation induce a broadly similar pattern of transition mutations at di-pyrimidine sites. The mutagenic potency of solar UV is counteracted by efficient repair of photodimers involving global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER); the latter is a specialized repair pathway to remove transcription-blocking photodimers and restore UV-inhibited transcription. On the molecular level these processes are facilitated and regulated by various post-translational modifications of NER factors and the chromatin substrate. Inherited defects in NER are manifested in different diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), UV sensitive syndrome (UVsS) and the photosensitive form of trichothiodystrophy (TTD). XP patients are prone to sunlight-induced skin cancer. UVB irradiated XP and CS knockout mouse models unveiled that only TC-NER counteracts erythema/edema, whereas both GG-NER and TC-NER protect against UVB-induced cancer. Additionally, UVA radiation induces mutations characterized by oxidation-linked signature at non-di-pyrimidine sites. The biological relevance of oxidation damage is demonstrated by the cancer susceptibility of UVB-irradiated mice deficient in repair of oxidation damage, i.e., 8-oxoguanine.


Asunto(s)
Daño del ADN/efectos de la radiación , Rayos Ultravioleta , Animales , Reparación del ADN , Humanos , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Transducción de Señal/efectos de la radiación , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/genética
6.
Mol Cell ; 37(5): 714-27, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20227374

RESUMEN

Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has not yet been established. We report that, in human fibroblasts, approximately half of the repair synthesis requires both pol kappa and pol delta, and both polymerases can be recovered in the same repair complexes. Pol kappa is recruited to repair sites by ubiquitinated PCNA and XRCC1 and pol delta by the classical replication factor complex RFC1-RFC, together with a polymerase accessory factor, p66, and unmodified PCNA. The remaining repair synthesis is dependent on pol epsilon, recruitment of which is dependent on the alternative clamp loader CTF18-RFC.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Fibroblastos/enzimología , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Portadoras/metabolismo , Línea Celular , Senescencia Celular , ADN Polimerasa II/metabolismo , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Fibroblastos/efectos de la radiación , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Replicación C/metabolismo , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas , Ubiquitinación , Rayos Ultravioleta , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
7.
Nucleic Acids Res ; 42(7): 4406-13, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24464993

RESUMEN

Rev3, the catalytic subunit of DNA polymerase ζ, is essential for translesion synthesis of cytotoxic DNA photolesions, whereas the Rev1 protein plays a noncatalytic role in translesion synthesis. Here, we reveal that mammalian Rev3(-/-) and Rev1(-/-) cell lines additionally display a nucleotide excision repair (NER) defect, specifically during S phase. This defect is correlated with the normal recruitment but protracted persistence at DNA damage sites of factors involved in an early stage of NER, while repair synthesis is affected. Remarkably, the NER defect becomes apparent only at 2 h post-irradiation indicating that Rev3 affects repair synthesis only indirectly, rather than performing an enzymatic role in NER. We provide evidence that the NER defect is caused by scarceness of Replication protein A (Rpa) available to NER, resulting from its sequestration at stalled replication forks. Also the induction of replicative stress using hydroxyurea precludes the accumulation of Rpa at photolesion sites, both in Rev3(-/-) and in wild-type cells. These data support a model in which the limited Rpa pool coordinates replicative stress and NER, resulting in increased cytotoxicity of ultraviolet light when replicative stress exceeds a threshold.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteína de Replicación A/metabolismo , Animales , Línea Celular , Proliferación Celular , ADN Polimerasa Dirigida por ADN/genética , Ratones , Transcripción Genética , Rayos Ultravioleta/efectos adversos
8.
J Cell Sci ; 124(Pt 3): 435-46, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21224401

RESUMEN

Activation of signaling pathways by UV radiation is a key event in the DNA damage response and initiated by different cellular processes. Here we show that non-cycling cells proficient in nucleotide excision repair (NER) initiate a rapid but transient activation of the damage response proteins p53 and H2AX; by contrast, NER-deficient cells display delayed but persistent signaling and inhibition of cell cycle progression upon release from G0 phase. In the absence of repair, UV-induced checkpoint activation coincides with the formation of single-strand DNA breaks by the action of the endonuclease Ape1. Although temporally distinct, activation of checkpoint proteins in NER-proficient and NER-deficient cells depends on a common pathway involving the ATR kinase. These data reveal that damage signaling in non-dividing cells proceeds via NER-dependent and NER-independent processing of UV photolesions through generation of DNA strand breaks, ultimately preventing the transition from G1 to S phase.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN/fisiología , Reparación del ADN/fisiología , Histonas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteína p53 Supresora de Tumor/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Roturas del ADN de Cadena Simple , Daño del ADN/efectos de la radiación , ADN de Cadena Simple/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Humanos , Fase de Descanso del Ciclo Celular/fisiología , Transducción de Señal/fisiología , Rayos Ultravioleta
9.
Mutat Res ; 735(1-2): 32-8, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22564430

RESUMEN

Calcineurin is a Ca(2+)-dependent serine/threonine phosphatase and the target of the immunosuppressive drugs cyclosporin and tacrolimus, which are used in transplant recipients to prevent rejection. Unfortunately, the therapeutic use of this drugs is complicated by a high incidence of skin malignancy, which has set off a number of studies into the role of calcineurin signaling in skin, particularly with respect to cell cycle control and DNA repair. Both UVA1 radiation and arsenic species are known to promote skin cancer development via production of reactive oxygen species. In light of the well-documented sensitivity of calcineurin to oxidative stress, we examined and compared the effects of UVA1 and arsenite on calcineurin signaling. In this paper, we show that physiologically relevant doses of UVA1 radiation and low micromolar concentrations of arsenite strongly inhibit calcineurin phosphatase activity in Jurkat and skin cells and decrease NFAT nuclear translocation in Jurkat cells. The effects on calcineurin signaling could be partly prevented by inhibition of NADPH oxidase in Jurkat cells or increased dismutation of superoxide in Jurkat and skin cells. In addition, both UVA1 and arsenite decreased NF-κB activity, although at lower concentrations, arsenite enhanced NF-κB activity. These data indicate that UVA1 and arsenite affect a signal transduction route of growingly acknowledged importance in skin and that calcineurin may serve as a potential link between ROS exposure and impaired tumor suppression.


Asunto(s)
Arsenitos/farmacocinética , Calcineurina/metabolismo , Calcineurina/farmacología , Piel/efectos de los fármacos , Piel/efectos de la radiación , Rayos Ultravioleta , Células Cultivadas , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Humanos , Células Jurkat , Factores de Transcripción NFATC/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Piel/metabolismo , Superóxidos/metabolismo , Factor de Transcripción ReIA/metabolismo
10.
DNA Repair (Amst) ; 113: 103305, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35255311

RESUMEN

BACKGROUND: Although cancer risk is assumed to be linear with ionizing radiation (IR) dose, it is unclear to what extent low doses (LD) of IR from medical and occupational exposures pose a cancer risk for humans. Improved mechanistic understanding of the signaling responses to LD may help to clarify this uncertainty. Here, we performed quantitative mass spectrometry-based proteomics and phosphoproteomics experiments, using mouse embryonic stem cells, at 0.5 h and 4 h after exposure to LD (0.1 Gy) and high doses (HD; 1 Gy) of IR. RESULTS: The proteome remained relatively stable (29; 0.5% proteins responded), whereas the phosphoproteome changed dynamically (819; 7% phosphosites changed) upon irradiation. Dose-dependent alterations of 25 IR-responsive proteins were identified, with only four in common between LD and HD. Mitochondrial metabolic proteins and pathways responded to LD, whereas transporter proteins and mitochondrial uncoupling pathways responded to HD. Congruently, mitochondrial respiration increased after LD exposure but decreased after HD exposure. While the bulk of the phosphoproteome response to LD (76%) occurred already at 0.5 h, an equivalent proportion of the phosphosites responded to HD at both time points. Motif, kinome/phosphatome, kinase-substrate, and pathway analyses revealed a robust DNA damage response (DDR) activation after HD exposure but not after LD exposure. Instead, LD-irradiation induced (de)phosphorylation of kinases, kinase-substrates and phosphatases that predominantly respond to reactive oxygen species (ROS) production. CONCLUSION: Our analyses identify discrete global proteome and phosphoproteome responses after LD and HD, uncovering novel proteins and protein (de)phosphorylation events involved in the dose-dependent ionizing radiation responses.

11.
Cells ; 11(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36497055

RESUMEN

Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).


Asunto(s)
Roturas del ADN de Doble Cadena , Radiación Ionizante , Puntos de Control de la Fase G2 del Ciclo Celular , Especies Reactivas de Oxígeno , Transducción de Señal
12.
Mutat Res ; 728(3): 107-17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21763452

RESUMEN

The accumulation of DNA damage is a slow but hazardous phenomenon that may lead to cell death, accelerated aging features and cancer. One of the most versatile and important defense mechanisms against the accumulation of DNA damage is nucleotide excision repair (NER), in which the Xeroderma pigmentosum group C (XPC) protein plays a prominent role. NER can be divided into global genome repair (GG-NER) and transcription coupled repair (TC-NER). XPC is a key factor in GG-NER where it functions in DNA damage recognition and after which the repair machinery is recruited to eliminate the DNA damage. Defective XPC functioning has been shown to result in a cancer prone phenotype, in human as well as in mice. Mutation accumulation in XPC deficient mice is accelerated and increased, resulting in an increased tumor incidence. More recently XPC has also been linked to functions outside of NER since XPC deficient mice show a divergent tumor spectrum compared to other NER deficient mouse models. Multiple in vivo and in vitro experiments indicate that XPC appears to be involved in the initiation of several DNA damage-induced cellular responses. XPC seems to function in the removal of oxidative DNA damage, redox homeostasis and cell cycle control. We hypothesize that this combination of increased oxidative DNA damage sensitivity, disturbed redox homeostasis together with inefficient cell cycle control mechanisms are causes of the observed increased cancer susceptibility in oxygen exposed tissues. Such a phenotype is absent in other NER-deficient mice, including Xpa.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Neoplasias/etiología , Envejecimiento , Animales , Puntos de Control del Ciclo Celular , Reparación del ADN , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo
13.
Cells ; 10(12)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34943915

RESUMEN

The influence of phosphoproteomics sample preparation methods on the biological interpretation of signaling outcome is unclear. Here, we demonstrate a strong bias in phosphorylation signaling targets uncovered by comparing the phosphoproteomes generated by two commonly used methods-strong cation exchange chromatography-based phosphoproteomics (SCXPhos) and single-run high-throughput phosphoproteomics (HighPhos). Phosphoproteomes of embryonic stem cells exposed to ionizing radiation (IR) profiled by both methods achieved equivalent coverage (around 20,000 phosphosites), whereas a combined dataset significantly increased the depth (>30,000 phosphosites). While both methods reproducibly quantified a subset of shared IR-responsive phosphosites that represent DNA damage and cell-cycle-related signaling events, most IR-responsive phosphoproteins (>82%) and phosphosites (>96%) were method-specific. Both methods uncovered unique insights into phospho-signaling mediated by single (SCXPhos) versus double/multi-site (HighPhos) phosphorylation events; particularly, each method identified a distinct set of previously unreported IR-responsive kinome/phosphatome (95% disparate) directly impacting the uncovered biology.


Asunto(s)
Fosfoproteínas/metabolismo , Proteómica , Transducción de Señal , Secuencias de Aminoácidos , Animales , Línea Celular , Marcaje Isotópico , Ratones , Fosfoproteínas/química , Fosforilación , Proteoma/metabolismo
14.
DNA Repair (Amst) ; 8(2): 153-61, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18996499

RESUMEN

UV-damaged DNA-binding protein (UV-DDB) is essential for global genome nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers (CPD) and accelerates repair of 6-4 photoproducts (6-4PP). The high UV-induced skin cancer susceptibility of mice compared to man has been attributed to low expression of the UV-DDB subunit DDB2 in mouse skin cells. However, DDB2 knockout mice exhibit enhanced UVB skin carcinogenesis indicating that DDB2 protects mice against UV-induced skin cancer. To resolve these apparent contradictory findings, we systematically investigated the NER capacity of mouse fibroblasts and keratinocytes. Compared to fibroblasts, keratinocytes exhibited an increased level of UV-DDB activity, contained significantly higher levels of other NER proteins (i.e. XPC and XPB) and displayed efficient repair of CPD. At low UVB dosages, the difference in skin cancer susceptibility between DDB2 KO and wild type mice was even much more pronounced than previously reported with high dose UVB exposures. Hence, our observations show that mouse keratinocytes express sufficient levels of UV-DDB for efficient repair of photolesions and efficient protection against UV-induced skin cancer at physiological relevant UV exposure.


Asunto(s)
Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Queratinocitos/metabolismo , Neoplasias Cutáneas/metabolismo , Rayos Ultravioleta , Animales , Susceptibilidad a Enfermedades , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Humanos , Queratinocitos/citología , Queratinocitos/efectos de la radiación , Cinética , Ratones , Ratones Pelados , Dímeros de Pirimidina/metabolismo
15.
Chem Res Toxicol ; 23(7): 1175-83, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20509621

RESUMEN

Trivalent antimony is a known genotoxic agent classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC) and as an animal carcinogen by the German MAK Commission. Nevertheless, the underlying mechanism for its genotoxicity remains elusive. Because of the similarities between antimony and arsenic, the inhibition of DNA repair has been a promising hypothesis. Investigations on the removal of DNA lesions now revealed a damage specific impairment of nucleotide excision repair (NER). After irradiation of A549 human lung carcinoma cells with UVC, a higher number of cyclobutane pyrimidine dimers (CPD) remained in the presence of SbCl(3), whereas processing of the 6-4 photoproducts (6-4PP) and benzo[a]pyrene diol epoxide (BPDE)-induced DNA adducts was not impaired. Nevertheless, cell viability was reduced in a more than additive mode after combined treatment of SbCl(3) with UVC as well as with BPDE. In search of the molecular targets, a decrease in gene expression and protein level of XPE was found, which is known to be indispensable for the recognition of CPD. Moreover, trivalent antimony was shown to interact with the zinc finger domain of XPA, another NER protein, since SbCl(3) mediated a concentration dependent release of zinc from a peptide consistent with this domain. In the cellular system, association of XPA to and dissociation from damaged DNA was diminished in the presence of SbCl(3). These results show for the first time that trivalent antimony interferes with proteins involved in nucleotide excision repair and partly impairs this pathway, pointing to an indirect mechanism in the genotoxicity of trivalent antimony.


Asunto(s)
Antimonio/toxicidad , Carcinógenos/toxicidad , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Benzopirenos/toxicidad , Línea Celular Tumoral , Aductos de ADN/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
16.
Chem Res Toxicol ; 23(2): 432-42, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20092276

RESUMEN

Water-soluble and particulate cadmium compounds are carcinogenic to humans. While direct interactions with DNA are unlikely to account for carcinogenicity, induction of oxidative DNA damage and interference with DNA repair processes might be more relevant underlying modes of action (recently summarized, for example, in Joseph , P. (2009) Tox. Appl. Pharmacol. 238 , 271 - 279). The present study aimed to compare genotoxic effects of particulate CdO and soluble CdCl(2) in cultured human cells (A549, VH10hTert). Both cadmium compounds increased the baseline level of oxidative DNA damage. Even more pronounced, both cadmium compounds inhibited the nucleotide excision repair (NER) of BPDE-induced bulky DNA adducts and UVC-induced photolesions in a dose-dependent manner at noncytotoxic concentrations. Thereby, the uptake of cadmium in the nuclei strongly correlated with the repair inhibition of bulky DNA adducts, indicating that independent of the cadmium compound applied Cd(2+) is the common species responsible for the observed repair inhibition. Regarding the underlying molecular mechanisms in human cells, CdCl(2) (as shown before by Meplan, C., Mann, K. and Hainaut, P. (1999) J. Biol. Chem. 274 , 31663 - 31670 ) and CdO altered the conformation of the zinc binding domain of the tumor suppressor protein p53. In further studies applying only CdCl(2), cadmium decreased the total nuclear protein level of XPC, which is believed to be the principle initiator of global genome NER. This led to diminished association of XPC to sites of local UVC damage, resulting in decreased recruitment of further NER proteins. Additionally, CdCl(2) strongly disturbed the disassembly of XPC and XPA. In summary, our data indicate a general nucleotide excision repair inhibition by cadmium compounds, which is most likely caused by a diminished assembly and disassembly of the NER machinery. These data reveal new insights into the mechanisms involved in cadmium carcinogenesis and provide further evidence that DNA repair inhibition may be one predominant mechanism in cadmium induced carcinogenicity.


Asunto(s)
Compuestos de Cadmio/toxicidad , Carcinógenos/toxicidad , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Células Cultivadas , Humanos , Microscopía Electrónica de Rastreo , Modelos Biológicos , Estrés Oxidativo , Tamaño de la Partícula , Solubilidad
17.
Mutat Res ; 689(1-2): 50-8, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20471405

RESUMEN

Homologous recombination is essential for repair of DNA interstrand cross-links and double-strand breaks. The Rad51C protein is one of the five Rad51 paralogs in vertebrates implicated in homologous recombination. A previously described hamster cell mutant defective in Rad51C (CL-V4B) showed increased sensitivity to DNA damaging agents and displayed genomic instability. Here, we identified a splice donor mutation at position +5 of intron 5 of the Rad51C gene in this mutant, and generated mice harboring an analogous base pair alteration. Rad51C(splice) heterozygous animals are viable and do not display any phenotypic abnormalities, however homozygous Rad51C(splice) embryos die during early development (E8.5). Detailed analysis of two CL-V4B revertants, V4B-MR1 and V4B-MR2, that have reduced levels of full-length Rad51C transcript when compared to wild type hamster cells, showed increased sensitivity to mitomycin C (MMC) in clonogenic survival, suggesting haploinsufficiency of Rad51C. Similarly, mouse Rad51C(splice/neo) heterozygous ES cells also displayed increased MMC sensitivity. Moreover, in both hamster revertants, Rad51C haploinsufficiency gives rise to increased frequencies of spontaneous and MMC-induced chromosomal aberrations, impaired sister chromatid cohesion and reduced cloning efficiency. These results imply that adequate expression of Rad51C in mammalian cells is essential for maintaining genomic stability and sister chromatid cohesion to prevent malignant transformation.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/genética , Desarrollo Embrionario/genética , Inestabilidad Genómica , Animales , Aberraciones Cromosómicas , Cricetinae , Cricetulus , Femenino , Haploidia , Ratones , Ratones Endogámicos C57BL , Mitomicina/farmacología , Mutación , Embarazo , Intercambio de Cromátides Hermanas
18.
DNA Repair (Amst) ; 7(8): 1330-9, 2008 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-18539547

RESUMEN

DNA damage-induced mutations in actively transcribed genes in stem cells underlie genetic diseases including cancer. Here we investigated whether transcription affects DNA damage-induced gene mutations in mouse embryonic stem cells. To this aim we developed cell lines in which transcription of an Hprt minigene reporter, located at a different genomic positions, is regulated by the tTA2 Tetracycline-controlled transactivator. This allows detection of mutagenic events at both Hprt and tTA2 using a single selection. We found that UV-C and benzo[a]pyrenediolepoxide induced significantly more mutations at the Hprt minigene when the gene was transcribed. The transcription-associated increase in UV-C-induced mutagenesis appears independent of the integration site of the Hprt minigene. Molecular analysis of UV-induced Hprt mutants revealed that transcription of damaged DNA enhances the frequency of nucleotide substitutions and triggers the generation of intragenic deletions at the Hprt minigene. We speculate that these deletions are a result of error-prone DNA end-joining of double strand DNA breaks that are generated when replication forks collide with transcription complexes stalled at DNA lesions.


Asunto(s)
Daño del ADN/genética , Células Madre Embrionarias/metabolismo , Transcripción Genética , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Animales , Hipoxantina Fosforribosiltransferasa/genética , Pérdida de Heterocigocidad , Ratones , Mutagénesis , Ratas , Rayos Ultravioleta
19.
Curr Biol ; 16(13): 1344-50, 2006 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-16824923

RESUMEN

Ionizing radiation is extremely harmful for human cells, and DNA double-strand breaks (DSBs) are considered to be the main cytotoxic lesions induced. Improper processing of DSBs contributes to tumorigenesis, and mutations in DSB response genes underlie several inherited disorders characterized by cancer predisposition. Here, we performed a comprehensive screen for genes that protect animal cells against ionizing radiation. A total of 45 C. elegans genes were identified in a genome-wide RNA interference screen for increased sensitivity to ionizing radiation in germ cells. These genes include orthologs of well-known human cancer predisposition genes as well as novel genes, including human disease genes not previously linked to defective DNA-damage responses. Knockdown of eleven genes also impaired radiation-induced cell-cycle arrest, and seven genes were essential for apoptosis upon exposure to irradiation. The gene set was further clustered on the basis of increased sensitivity to DNA-damaging cancer drugs cisplatin and camptothecin. Almost all genes are conserved across animal phylogeny, and their relevance for humans was directly demonstrated by showing that their knockdown in human cells results in radiation sensitivity, indicating that this set of genes is important for future cancer profiling and drug development.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Daño del ADN , Genes de Helminto/fisiología , Interferencia de ARN , Tolerancia a Radiación , Animales , Apoptosis/genética , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/efectos de la radiación , Proteínas de Caenorhabditis elegans/clasificación , Proteínas de Caenorhabditis elegans/fisiología , Línea Celular , Genoma/efectos de la radiación , Células Germinativas/fisiología , Células Germinativas/efectos de la radiación , Humanos , Radiación Ionizante
20.
Mutat Res ; 663(1-2): 7-14, 2009 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-19150617

RESUMEN

Irradiation of cells with UVC light induces two types of mutagenic DNA photoproducts, i.e. cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4 PP). To investigate the relationship between the frequency of UV-induced photolesions at specific sites and their ability to induce mutations, we quantified CPD formation at the nucleotide level along exons 3 and 8 of the hprt gene using ligation-mediated PCR, and determined the mutational spectrum of 132 UV-induced hprt mutants in the AA8 hamster cell line and of 165 mutants in its nucleotide excision repair-defective derivative UV5. In AA8 cells, transversions predominated with a strong strand bias towards thymine-containing photolesions in the non-transcribed strand. As hamster AA8 cells are proficient in global genome repair of 6-4 PP but selectively repair CPD from the transcribed strand of active genes, most mutations probably resulted from erroneous bypass of CPD in the non-transcribed strand. However, the relative incidence of CPD and the positions where mutations most frequently arose do not correlate. In fact some major damage sites hardly gave rise to the formation of mutations. In the repair-defective UV5 cells, mutations were almost exclusively C>T transitions caused by photoproducts at PyC sites in the transcribed strand. Even though CPD were formed at high frequencies at some TT sites in UV5, these photoproducts did not contribute to mutation induction at all. We conclude that, even in the absence of repair, large variations in the level of induction of CPD at different sites throughout the two exons do not correspond to frequencies of mutation induction.


Asunto(s)
Reparación del ADN/efectos de la radiación , Mutación/genética , Dímeros de Pirimidina/metabolismo , Rayos Ultravioleta , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , Exones/genética , Hipoxantina Fosforribosiltransferasa/genética , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA