Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(12): 5387-5392, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30842280

RESUMEN

Many approaches to the origin of life focus on how the molecules found in biology might be made in the absence of biological processes, from the simplest plausible starting materials. Another approach could be to view the emergence of the chemistry of biology as process whereby the environment effectively directs "primordial soups" toward structure, function, and genetic systems over time. This does not require the molecules found in biology today to be made initially, and leads to the hypothesis that environment can direct chemical soups toward order, and eventually living systems. Herein, we show how unconstrained condensation reactions can be steered by changes in the reaction environment, such as order of reactant addition, and addition of salts or minerals. Using omics techniques to survey the resulting chemical ensembles we demonstrate there are distinct, significant, and reproducible differences between the product mixtures. Furthermore, we observe that these differences in composition have consequences, manifested in clearly different structural and functional properties. We demonstrate that simple variations in environmental parameters lead to differentiation of distinct chemical ensembles from both amino acid mixtures and a primordial soup model. We show that the synthetic complexity emerging from such unconstrained reactions is not as intractable as often suggested, when viewed through a chemically agnostic lens. An open approach to complexity can generate compositional, structural, and functional diversity from fixed sets of simple starting materials, suggesting that differentiation of chemical ensembles can occur in the wider environment without the need for biological machinery.


Asunto(s)
Fenómenos Químicos , Aminoácidos/química , Ambiente , Evolución Química , Minerales/química , Origen de la Vida , Sales (Química)/química
2.
Glia ; 69(8): 2023-2036, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33942402

RESUMEN

Some children with proven intrauterine Zika virus (ZIKV) infection who were born asymptomatic subsequently manifested neurodevelopmental delays, pointing to impairment of development perinatally and postnatally. To model this, we infected postnatal day (P) 5-6 (equivalent to the perinatal period in humans) susceptible mice with a mammalian cell-propagated ZIKV clinical isolate from the Brazilian outbreak in 2015. All infected mice appeared normal up to 4 days post-intraperitoneal inoculation (dpi), but rapidly developed severe clinical signs at 5-6 dpi. All nervous tissue examined at 5/6 dpi appeared grossly normal. However, anti-ZIKV positive cells were observed in the optic nerve, brain, and spinal cord; predominantly in white matter. Co-labeling with cell type specific markers demonstrated oligodendrocytes and astrocytes support productive infection. Rarely, ZIKV positive neurons were observed. In spinal cord white matter, which we examined in detail, apoptotic cells were evident; the density of oligodendrocytes was significantly reduced; and there was localized microglial reactivity including expression of the NLRP3 inflammasome. Together, our observations demonstrate that a clinically relevant ZIKV isolate can directly impact oligodendrocytes. As primary oligodendrocyte cell death can lead later to secondary autoimmune demyelination, our observations may help explain neurodevelopmental delays in infants appearing asymptomatic at birth and commend lifetime surveillance.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Neuronas , Oligodendroglía , Embarazo , Infección por el Virus Zika/complicaciones
3.
J Cell Sci ; 132(11)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31152052

RESUMEN

Cancer cells are softer than the normal cells, and metastatic cells are even softer. These changes in biomechanical properties contribute to cancer progression by facilitating cell movement through physically constraining environments. To identify properties that enabled passage through physical constraints, cells that were more efficient at moving through narrow membrane micropores were selected from established cell lines. By examining micropore-selected human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, membrane fluidity and nuclear elasticity were excluded as primary contributors. Instead, reduced actin cytoskeleton anisotropy, focal adhesion density and cell stiffness were characteristics associated with efficient passage through constraints. By comparing transcriptomic profiles between the parental and selected populations, increased Ras/MAPK signalling was linked with cytoskeleton rearrangements and cell softening. MEK inhibitor treatment reversed the transcriptional, cytoskeleton, focal adhesion and elasticity changes. Conversely, expression of oncogenic KRas in parental MDA MB 231 cells, or oncogenic BRaf in parental MDA MB 435 cells, significantly reduced cell stiffness. These results reveal that MAPK signalling, in addition to tumour cell proliferation, has a significant role in regulating cell biomechanics.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Citoesqueleto de Actina/fisiología , Fenómenos Biomecánicos/fisiología , Movimiento Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Melanoma/fisiopatología , Anisotropía , Línea Celular Tumoral , Plasticidad de la Célula/fisiología , Proliferación Celular , Adhesiones Focales/fisiología , Humanos , Filtros Microporos , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
4.
J Liposome Res ; 30(2): 174-181, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31060409

RESUMEN

Originally developed for the treatment of inflammatory disorders, the non-steroidal anti-inflammatory drug aspirin was shown to have a preventive effect against cancer in the past decades. Most importantly, recent studies suggested that it might also provide a therapeutic benefit in the treatment of cancer in vitro. However, this drug failed to specifically reach tumors at a therapeutic concentration following intravenous administration, thus resulting in lack of efficacy on tumors. In this work, we demonstrated that aspirin could be formulated in transferrin-bearing vesicles and that this tumor-targeted formulation could lead to an increase in the anti-proliferative efficacy of the drug in three cancer cell lines in vitro. The in vitro therapeutic efficacy of aspirin was significantly improved when formulated in transferrin-bearing vesicles, by about 2-fold compared to that of drug solution. These results are promising and support the optimization of this delivery system to further improve its potential as a therapeutic tool in combination with other anti-cancer therapies.


Asunto(s)
Antineoplásicos/administración & dosificación , Aspirina/administración & dosificación , Portadores de Fármacos/química , Desarrollo de Medicamentos , Transferrina/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Aspirina/química , Aspirina/farmacología , Cápsulas/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
5.
Cell Biochem Funct ; 34(6): 429-40, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27470972

RESUMEN

Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.


Asunto(s)
Cinesinas/genética , Mutación/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/patología , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Cafeína/farmacología , Crioultramicrotomía , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Etiquetado Corte-Fin in Situ , Espacio Intracelular/metabolismo , Cinesinas/metabolismo , Melanosomas/efectos de los fármacos , Melanosomas/metabolismo , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
6.
Nanomedicine ; 11(6): 1445-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25933695

RESUMEN

The possibility of using gene therapy for the treatment of cancer is limited by the lack of safe, intravenously administered delivery systems able to selectively deliver therapeutic genes to tumors. In this study, we investigated if the conjugation of the polypropylenimine dendrimer to lactoferrin and lactoferricin, whose receptors are overexpressed on cancer cells, could result in a selective gene delivery to tumors and a subsequently enhanced therapeutic efficacy. The conjugation of lactoferrin and lactoferricin to the dendrimer significantly increased the gene expression in the tumor while decreasing the non-specific gene expression in the liver. Consequently, the intravenous administration of the targeted dendriplexes encoding TNFα led to the complete suppression of 60% of A431 tumors and up to 50% of B16-F10 tumors over one month. The treatment was well tolerated by the animals. These results suggest that these novel lactoferrin- and lactoferricin-bearing dendrimers are promising gene delivery systems for cancer therapy. FROM THE CLINICAL EDITOR: Specific targeting of cancer cells should enhance the delivery of chemotherapeutic agents. This is especially true for gene delivery. In this article, the authors utilized a dendrimer-based system and conjugated this with lactoferrin and lactoferricin to deliver anti-tumor genes. The positive findings in animal studies should provide the basis for further clinical studies.


Asunto(s)
Dendrímeros/administración & dosificación , Lactoferrina/administración & dosificación , Neoplasias/tratamiento farmacológico , Administración Intravenosa , Animales , Línea Celular Tumoral , Humanos
7.
Sci Signal ; 17(827): eade0580, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470957

RESUMEN

Intercellular communication between different cell types in solid tumors contributes to tumor growth and metastatic dissemination. The secretome of cancer-associated fibroblasts (CAFs) plays major roles in these processes. Using human mammary CAFs, we showed that CAFs with a myofibroblast phenotype released extracellular vesicles that transferred proteins to endothelial cells (ECs) that affected their interaction with immune cells. Mass spectrometry-based proteomics identified proteins transferred from CAFs to ECs, which included plasma membrane receptors. Using THY1 as an example of a transferred plasma membrane-bound protein, we showed that CAF-derived proteins increased the adhesion of a monocyte cell line to ECs. CAFs produced high amounts of matrix-bound EVs, which were the primary vehicles of protein transfer. Hence, our work paves the way for future studies that investigate how CAF-derived matrix-bound EVs influence tumor pathology by regulating the function of neighboring cancer, stromal, and immune cells.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Células Endoteliales , Neoplasias/metabolismo , Membrana Celular , Línea Celular , Fibroblastos/metabolismo , Microambiente Tumoral , Línea Celular Tumoral
8.
Pharmaceutics ; 15(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38004621

RESUMEN

Gene therapy holds great promise for treating prostate cancer unresponsive to conventional therapies. However, the lack of delivery systems that can transport therapeutic DNA and drugs while targeting tumors without harming healthy tissues presents a significant challenge. This study aimed to explore the potential of novel hybrid lipid nanoparticles, composed of biocompatible zein and conjugated to the cancer-targeting ligand transferrin. These nanoparticles were designed to entrap the anti-cancer drug docetaxel and carry plasmid DNA, with the objective of improving the delivery of therapeutic payloads to prostate cancer cells, thereby enhancing their anti-proliferative efficacy and gene expression levels. These transferrin-bearing, zein-based hybrid lipid nanoparticles efficiently entrapped docetaxel, leading to increased uptake by PC-3 and LNCaP cancer cells and significantly enhancing anti-proliferative efficacy at docetaxel concentrations exceeding 1 µg/mL. Furthermore, they demonstrated proficient DNA condensation, exceeding 80% at polymer-DNA weight ratios of 1500:1 and 2000:1. This resulted in increased gene expression across all tested cell lines, with the highest transfection levels up to 11-fold higher than those observed with controls, in LNCaP cells. These novel transferrin-bearing, zein-based hybrid lipid nanoparticles therefore exhibit promising potential as drug and gene delivery systems for prostate cancer therapy.

9.
J Pharm Pharm Sci ; 15(5): 669-79, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23331905

RESUMEN

PURPOSE: To compare the properties of buccal delivery matrices (wafers) made with dextrin, ß-limit dextrin and pre-gelatinised starch. METHODS: The constituent α-glucans were tested for their mucoadhesive properties in solution plus their content of crystalline material (differential scanning calorimetry, DSC). Wafers were made by lyophilisation of aqueous solutions/dispersions of the α-glucans. Physical properties of the wafers were evaluated using texture analysis, dissolution coupled to photography and scanning electron microscopy (SEM). RESULTS: The results highlighted how the ß-limit dextrins chemical and physical properties were ideally suited for the production of buccal delivery wafers. Dissolution testing confirmed the excellent hydration profile of the ß-limit dextrin (within wafers) with time. Using SEM it was evident that the homogeneous "bee-hive" like structure of the ß-limit dextrin wafers, unlike the other α-glucans, provided a rapidly hydratable strong porous matrix. CONCLUSIONS: The ß-limit dextrin α-glucan makes a superb (lyophilised) mucoadhesive delivery structure for the delivery of active agents to the buccal mucosa.


Asunto(s)
Dextrinas/química , Sistemas de Liberación de Medicamentos , Excipientes/química , Almidón/química , Adhesividad , Administración Bucal , Rastreo Diferencial de Calorimetría , Cristalización , Liofilización , Glucanos/química , Microscopía Electrónica de Rastreo , Solubilidad , Factores de Tiempo
10.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36497425

RESUMEN

The morphological changes during apoptosis help facilitate "immunologically silent" cell death. Caspase cleavage of the ROCK1 kinase results in its activation, which drives the forceful contraction of apoptotic cells. We previously showed that when ROCK1 was mutated to render it caspase-resistant, there was greater liver damage and neutrophil recruitment after treatment with the hepatotoxin diethylnitrosamine (DEN). We now show that acute DEN-induced liver damage induced higher levels of pro-inflammatory cytokines/chemokines, indicative of immunogenic cell death (ICD), in mice expressing non-cleavable ROCK1 (ROCK1nc). Hepatocellular carcinoma (HCC) tumours in ROCK1nc mice had more neutrophils and CD8+ T cells relative to mice expressing wild-type ROCK1, indicating that spontaneous tumour cell death also was more immunogenic. Since ICD induction has been proposed to be tumour-suppressive, the effects of two distinct ROCK inhibitors on HCC tumours was examined. Both fasudil and AT13148 significantly decreased tumour numbers, areas and volumes, but neither resulted in greater numbers of neutrophils or CD8+ T cells to be recruited. In the context of acute DEN-induced liver damage, AT13148 inhibited the recruitment of dendritic, natural killer and CD8+ T cells to livers. These observations indicate that there is an important role for ROCK1 cleavage to limit immunogenic cell death, which was not replicated by systemic ROCK inhibitor administration. As a result, concomitant administration of ROCK inhibitors with cancer therapeutics would be unlikely to result in therapeutic benefit by inducing ICD to increase anti-tumour immune responses.

11.
Sci Adv ; 8(40): eabo2626, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36206340

RESUMEN

We present an autonomous chemical synthesis robot for the exploration, discovery, and optimization of nanostructures driven by real-time spectroscopic feedback, theory, and machine learning algorithms that control the reaction conditions and allow the selective templating of reactions. This approach allows the transfer of materials as seeds between cycles of exploration, opening the search space like gene transfer in biology. The open-ended exploration of the seed-mediated multistep synthesis of gold nanoparticles (AuNPs) via in-line ultraviolet-visible characterization led to the discovery of five categories of nanoparticles by only performing ca. 1000 experiments in three hierarchically linked chemical spaces. The platform optimized nanostructures with desired optical properties by combining experiments and extinction spectrum simulations to achieve a yield of up to 95%. The synthetic procedure is outputted in a universal format using the chemical description language (χDL) with analytical data to produce a unique digital signature to enable the reproducibility of the synthesis.

12.
Int J Nanomedicine ; 17: 2809-2822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35791309

RESUMEN

Background: The manufacture of nanoparticles using manual methods is hampered by its challenging scale-up and poor reproducibility. To overcome this issue, the production of zein nanoparticles entrapping a lipophilic drug model, coumarin-6, by using a microfluidic system was assessed in this study. The influence of PEG density and chain length on zein nanoparticle characteristics, as well as their uptake efficacy in melanoma cancer cells, was also evaluated. Methods: Zein nanoparticles were prepared by both manual and microfluidic approaches to allow comparison between the two processes. PEGylated zein nanoparticles with various PEG densities and chain lengths were produced by nanoprecipitation and characterized. Their cellular uptake was evaluated on B16F10 melanoma cancer cells in vitro. Results: Zein nanoparticles have successfully been produced by both manual and microfluidic approaches. Parameters such as total flow rate and flow rate ratio of the aqueous and organic phases in microfluidic process, as well as the method preparation and aqueous to organic phase volume ratio during nanoprecipitation, have been shown to strongly influence the characteristics of the resulting nanoparticles. Continuous microfluidics led to the production of nanoparticles with low yield and drug entrapment, unlike nanoprecipitation, which resulted in zein nanoparticles with an appropriate size and an optimal drug entrapment efficiency of 64%. The surface modification of the nanoparticles produced by nanoprecipitation, with lower PEG density and shorter PEG chain length made mPEG5K-zein (0.5:1) the most favorable formulation in our study, resulting in enhanced stability and higher coumarin-6 uptake by melanoma cancer cells. Conclusion: mPEG5K-zein (0.5:1) nanoparticles prepared by nanoprecipitation were the most promising formulation in our study, exhibiting increased stability and enhancing coumarin-6 uptake by melanoma cancer cells.


Asunto(s)
Melanoma , Nanopartículas , Zeína , Cumarinas , Humanos , Melanoma/tratamiento farmacológico , Microfluídica , Reproducibilidad de los Resultados
13.
Nat Microbiol ; 7(11): 1879-1890, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280786

RESUMEN

Interactions between respiratory viruses during infection affect transmission dynamics and clinical outcomes. To identify and characterize virus-virus interactions at the cellular level, we coinfected human lung cells with influenza A virus (IAV) and respiratory syncytial virus (RSV). Super-resolution microscopy, live-cell imaging, scanning electron microscopy and cryo-electron tomography revealed extracellular and membrane-associated filamentous structures consistent with hybrid viral particles (HVPs). We found that HVPs harbour surface glycoproteins and ribonucleoproteins of IAV and RSV. HVPs use the RSV fusion glycoprotein to evade anti-IAV neutralizing antibodies and infect and spread among cells lacking IAV receptors. Finally, we show that IAV and RSV coinfection in primary cells of the bronchial epithelium results in viral proteins from both viruses co-localizing at the apical cell surface. Our observations define a previously unknown interaction between respiratory viruses that might affect virus pathogenesis by expanding virus tropism and enabling immune evasion.


Asunto(s)
Coinfección , Virus de la Influenza A , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Infecciones por Virus Sincitial Respiratorio/metabolismo , Anticuerpos Antivirales/metabolismo , Virión/metabolismo
14.
Pharmaceutics ; 14(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214171

RESUMEN

The formation of a protein layer "corona" on the nanoparticle surface upon entry into a biological environment was shown to strongly influence the interactions with cells, especially affecting the uptake of nanomedicines. In this work, we present the impact of the protein corona on the uptake of PEGylated zein micelles by cancer cells, macrophages, and dendritic cells. Zein was successfully conjugated with poly(ethylene glycol) (PEG) of varying chain lengths (5K and 10K) and assembled into micelles. Our results demonstrate that PEGylation conferred stealth effects to the zein micelles. The presence of human plasma did not impact the uptake levels of the micelles by melanoma cancer cells, regardless of the PEG chain length used. In contrast, it decreased the uptake by macrophages and dendritic cells. These results therefore make PEGylated zein micelles promising as potential drug delivery systems for cancer therapy.

15.
Int J Nanomedicine ; 16: 2615-2631, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854311

RESUMEN

BACKGROUND: Plumbagin, a naphthoquinone extracted from the officinal leadwort presenting promising anti-cancer properties, has its therapeutic potential limited by its inability to reach tumors in a specific way at a therapeutic concentration following systemic injection. The purpose of this study is to assess whether a novel tumor-targeted, lipid-polymer hybrid nanoparticle formulation of plumbagin would suppress the growth of B16-F10 melanoma in vitro and in vivo. METHODS: Novel lipid-polymer hybrid nanoparticles entrapping plumbagin and conjugated with transferrin, whose receptors are present in abundance on many cancer cells, have been developed. Their cellular uptake, anti-proliferative and apoptosis efficacy were assessed on various cancer cell lines in vitro. Their therapeutic efficacy was evaluated in vivo after tail vein injection to mice bearing B16-F10 melanoma tumors. RESULTS: The transferrin-bearing lipid-polymer hybrid nanoparticles loaded with plumbagin resulted in the disappearance of 40% of B16-F10 tumors and regression of 10% of the tumors following intravenous administration. They were well tolerated by the mice. CONCLUSION: These therapeutic effects, therefore, make transferrin-bearing lipid-polymer hybrid nanoparticles entrapping plumbagin a highly promising anti-cancer nanomedicine.


Asunto(s)
Lípidos/química , Melanoma Experimental/tratamiento farmacológico , Nanopartículas/química , Naftoquinonas/administración & dosificación , Naftoquinonas/uso terapéutico , Polímeros/química , Neoplasias Cutáneas/tratamiento farmacológico , Transferrina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cumarinas/farmacología , Cumarinas/uso terapéutico , Liberación de Fármacos , Endocitosis/efectos de los fármacos , Femenino , Humanos , Inyecciones Intravenosas , Melanoma Experimental/patología , Ratones Endogámicos BALB C , Naftoquinonas/farmacología , Neoplasias Cutáneas/patología , Tiazoles/farmacología , Tiazoles/uso terapéutico
16.
Int J Nanomedicine ; 16: 4391-4407, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234433

RESUMEN

BACKGROUND: Gold nanocages have been widely used as multifunctional platforms for drug and gene delivery, as well as photothermal agents for cancer therapy. However, their potential as gene delivery systems for cancer treatment has been reported in combination with chemotherapeutics and photothermal therapy, but not in isolation so far. The purpose of this work was to investigate whether the conjugation of gold nanocages with the cancer targeting ligand lactoferrin, polyethylene glycol and polyethylenimine could lead to enhanced transfection efficiency on prostate cancer cells in vitro, without assistance of external stimulation. METHODS: Novel lactoferrin-bearing gold nanocages conjugated to polyethylenimine and polyethylene glycol have been synthesized and characterized. Their transfection efficacy and cytotoxicity were assessed on PC-3 prostate cancer cell line following complexation with a plasmid DNA. RESULTS: Lactoferrin-bearing gold nanocages, alone or conjugated with polyethylenimine and polyethylene glycol, were able to condense DNA at conjugate:DNA weight ratios 5:1 and higher. Among all gold conjugates, the highest gene expression was obtained following treatment with gold complex conjugated with polyethylenimine and lactoferrin, at weight ratio 40:1, which was 1.71-fold higher than with polyethylenimine. This might be due to the increased DNA cellular uptake observed with this conjugate, by up to 8.65-fold in comparison with naked DNA. CONCLUSION: Lactoferrin-bearing gold nanocages conjugates are highly promising gene delivery systems to prostate cancer cells.


Asunto(s)
Portadores de Fármacos/química , Técnicas de Transferencia de Gen , Oro/química , Lactoferrina/química , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ADN/administración & dosificación , ADN/química , ADN/genética , Terapia Genética , Humanos , Masculino , Plásmidos/genética , Polietilenglicoles/química , Polietileneimina/química , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Transfección
17.
Biomater Sci ; 9(4): 1431-1448, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33404026

RESUMEN

Stimuli-responsive nanocarriers have become increasingly important for nucleic acid and drug delivery in cancer therapy. Here, we report the synthesis, characterization and evaluation of disulphide-linked, octadecyl (C18 alkyl) chain-bearing PEGylated generation 3-diaminobutyric polypropylenimine dendrimer-based vesicles (or dendrimersomes) for gene delivery. The lipid-bearing PEGylated dendrimer was successfully synthesized through in situ two-step reaction. It was able to spontaneously self-assemble into stable, cationic, nanosized vesicles, with low critical aggregation concentration value, and also showed redox-responsiveness in presence of a glutathione concentration similar to that of the cytosolic reducing environment. In addition, it was able to condense more than 70% of DNA at dendrimer: DNA weight ratios of 5 : 1 and higher. This dendriplex resulted in an enhanced cellular uptake of DNA at dendrimer: DNA weight ratios of 10 : 1 and 20 : 1, by up to 16-fold and by up to 28-fold compared with naked DNA in PC-3 and DU145 prostate cancer cell lines respectively. At a dendrimer: DNA weight ratio of 20 : 1, it led to an increase in gene expression in PC-3 and DU145 cells, compared with DAB dendriplex. These octadecyl chain-bearing, PEGylated dendrimer-based vesicles are therefore promising redox-sensitive drug and gene delivery systems for potential applications in combination cancer therapy.


Asunto(s)
Dendrímeros , Neoplasias , ADN/genética , Técnicas de Transferencia de Gen , Humanos , Masculino , Oxidación-Reducción , Polietilenglicoles , Polipropilenos
18.
Elife ; 102021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33871359

RESUMEN

Apoptosis is characterized by profound morphological changes, but their physiological purpose is unknown. To characterize the role of apoptotic cell contraction, ROCK1 was rendered caspase non-cleavable (ROCK1nc) by mutating aspartate 1113, which revealed that ROCK1 cleavage was necessary for forceful contraction and membrane blebbing. When homozygous ROCK1nc mice were treated with the liver-selective apoptotic stimulus of diethylnitrosamine, ROCK1nc mice had more profound liver damage with greater neutrophil infiltration than wild-type mice. Inhibition of the damage-associated molecular pattern protein HMGB1 or signalling by its cognate receptor TLR4 lowered neutrophil infiltration and reduced liver damage. ROCK1nc mice also developed fewer diethylnitrosamine-induced hepatocellular carcinoma (HCC) tumours, while HMGB1 inhibition increased HCC tumour numbers. Thus, ROCK1 activation and consequent cell contraction are required to limit sterile inflammation and damage amplification following tissue-scale cell death. Additionally, these findings reveal a previously unappreciated role for acute sterile inflammation as an efficient tumour-suppressive mechanism.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular/prevención & control , Forma de la Célula , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Neoplasias Hepáticas/prevención & control , Hígado/patología , Quinasas Asociadas a rho/metabolismo , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/patología , Caspasas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Dietilnitrosamina , Modelos Animales de Enfermedad , Activación Enzimática , Ácido Glicirrínico , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , Hígado/enzimología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Mutación , Cadenas Ligeras de Miosina/metabolismo , Infiltración Neutrófila , Fosforilación , Sulfonamidas , Receptor Toll-Like 4/metabolismo , Quinasas Asociadas a rho/genética
19.
Microbiology (Reading) ; 156(Pt 10): 3079-3084, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20616103

RESUMEN

Human small and large intestinal tissue was used to study the interaction of Campylobacter jejuni with its target tissue. The strain used for the study was 81-176 (+pVir). Tissue was processed for scanning and transmission electron microscopy, and by immunohistochemistry for light microscopy. Organisms adhered to the apical surface of ileal tissues at all time points in large numbers, in areas where mucus was present and in distinct groups. Microcolony formation was evident at 1-2 h, with bacteria adhering to mucus on the tissue surface and to each other by flagellar interaction. At later time points (3-4 h), biofilm formation on ileal tissue was evident. Flagellar mutants did not form microcolonies or biofilms in tissue. Few organisms were observed in colonic tissue, with organisms present but not as abundant as in the ileal tissue. This study shows that C. jejuni 81-176 can form microcolonies and biofilms on human intestinal tissue and that this may be an essential step in its ability to cause diarrhoea in man.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Campylobacter jejuni/crecimiento & desarrollo , Intestino Grueso/microbiología , Intestino Delgado/microbiología , Adhesión Bacteriana , Humanos , Técnicas In Vitro , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
20.
J Biomed Nanotechnol ; 16(1): 85-100, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31996288

RESUMEN

Plumbagin, a natural naphthoquinone from the officinal leadwort, has recently been shown to exert promising anti-cancer effects. However, its therapeutic use is hampered by its failure to specifically reach tumors after intravenous administration, without secondary effects on normal tissues. Its poor solubility in water and rapid elimination following in vivo administration further limit its potential use. We hypothesize that the entrapment of plumbagin within PEGylated PLGA nanoparticles conjugated with transferrin, whose receptors are overexpressed on many types of cancer cells, could lead to a selective delivery of the drug to tumors following intravenous administration and enhance its chemotherapeutic effects. The objectives of this study were therefore to prepare and characterize transferrin-conjugated, PEGylated PLGA nanoparticles entrapping plumbagin, and to assess their anti-cancer efficacy in vitro as well as in tumor-bearing mice. The intravenous administration of transferrin-conjugated PEGylated PLGA nanoparticles resulted in the complete suppression of 10% of B16-F10 tumors and regression of 30% of the tumors, with improvement of the animal survival compared to controls. The treatment was well tolerated by the animals. Transferrin-bearing PEGylated PLGA nanoparticles entrapping plumbagin are therefore highly promising therapeutic systems, able to lead to tumor regression and even suppression after intravenous administration without visible toxicity.


Asunto(s)
Nanopartículas , Animales , Línea Celular Tumoral , Ratones , Naftoquinonas , Transferrina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA