Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982203

RESUMEN

Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.


Asunto(s)
Contaminantes Atmosféricos , Masculino , Ratones , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Biocombustibles/toxicidad , Biocombustibles/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Azufre , Inflamación
2.
Environ Sci Technol ; 56(20): 14640-14648, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36177943

RESUMEN

Biodiesel usage is increasing steadily worldwide as the push for renewable fuel sources increases. The increased oxygen content in biodiesel fuel is believed to cause decreased particulate matter (PM) and increased nitrous oxides within its exhaust. The addition of fuel additives to further increase the oxygen content may contribute to even further benefits in exhaust composition. The aim of this study was to assess the toxicity of 10% (v/v) diethylene glycol dimethyl ether (DGDME) added as a biodiesel fuel additive. Primary human airway epithelial cells were grown at the air-liquid interface and exposed to diluted exhaust from an engine running on either grapeseed, bran, or coconut biodiesel or the same three biodiesels with 10% (v/v) DGDME added to them; mineral diesel and air were used as controls. Exhaust properties, culture permeability, epithelial cell damage, and IL-6 and IL-8 release were measured postexposure. The fuel additive DGDME caused a decrease in PM and nitrous oxide concentrations. However, exhaust exposure with DGDME also caused decreased permeability, increased epithelial cell damage, and increased release of IL-6 and IL-8 (p < 0.05). Despite the fuel additive having beneficial effects on the exhaust properties of the biodiesel, it was found to be more toxic.


Asunto(s)
Contaminantes Atmosféricos , Biocombustibles , Contaminantes Atmosféricos/análisis , Células Epiteliales , Glicoles de Etileno , Gasolina/toxicidad , Humanos , Interleucina-6/farmacología , Interleucina-8/farmacología , Éteres Metílicos , Minerales , Óxido Nitroso , Oxígeno , Material Particulado/análisis , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
3.
Med J Aust ; 216(1): 27-32, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34528266

RESUMEN

OBJECTIVES: To assess the chemical composition of electronic cigarette liquids (e-liquids) sold in Australia, in both their fresh and aged forms. DESIGN, SETTING: Gas chromatography-mass spectrometry analysis of commercial e-liquids sold in Australia (online and physical stores). MAIN OUTCOME MEASURES: Chemical composition of 65 Australian e-liquids - excipients/solvents, flavouring chemicals, other known e-liquid constituents (including nicotine), and polycyclic aromatic hydrocarbons - before and after an accelerated ageing process that simulated the effects of vaping. RESULTS: The measured levels of propylene glycol and glycerol often diverged from those recorded on the e-liquid label. All e-liquids contained one or more potentially harmful chemicals, including benzaldehyde, menthol, trans-cinnamaldehyde, and polycyclic aromatic hydrocarbons. Nicotine or nicotyrine were detected in a small proportion of e-liquids at extremely low concentrations. CONCLUSIONS: Australian e-liquids contain a wide variety of chemicals for which information on inhalation toxicity is not available. Further analyses are required to assess the potential long term effects of e-cigarette use on health.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina/normas , Etiquetado de Productos/normas , Acroleína/análogos & derivados , Acroleína/análisis , Acroleína/normas , Administración por Inhalación , Australia , Aromatizantes/análisis , Aromatizantes/normas , Cromatografía de Gases y Espectrometría de Masas , Nicotina/análisis , Nicotina/normas , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/normas , Propilenglicol/análisis , Propilenglicol/normas
4.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669849

RESUMEN

The development of food allergy has been reported to be related with the changes in the gut microbiome, however the specific microbe associated with the pathogenesis of food allergy remains elusive. This study aimed to comprehensively characterize the gut microbiome and identify individual or group gut microbes relating to food-allergy using 16S rRNA gene sequencing with network analysis. Faecal samples were collected from children with IgE-mediated food allergies (n = 33) and without food allergy (n = 27). Gut microbiome was profiled by 16S rRNA gene sequencing. OTUs obtained from 16S rRNA gene sequencing were then used to construct a co-abundance network using Weighted Gene Co-expression Network Analysis (WGCNA) and mapped onto Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We identified a co-abundance network module to be positively correlated with IgE-mediated food allergy and this module was characterized by a hub taxon, namely Ruminococcaceae UCG-002 (phylum Firmicutes). Functional pathway analysis of all the gut microbiome showed enrichment of methane metabolism and glycerolipid metabolism in the gut microbiome of food-allergic children and enrichment of ubiquinone and other terpenoid-quinone biosynthesis in the gut microbiome of non-food allergic children. We concluded that Ruminococcaceae UCG-002 may play determinant roles in gut microbial community structure and function leading to the development of IgE-mediated food allergy.


Asunto(s)
Hipersensibilidad a los Alimentos/microbiología , Microbioma Gastrointestinal , Inmunoglobulina E/efectos adversos , Biodiversidad , Niño , Análisis Discriminante , Femenino , Humanos , Masculino , Filogenia
5.
Environ Sci Technol ; 53(19): 11437-11446, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31453689

RESUMEN

As global biodiesel production increases, there are concerns over the potential health impact of exposure to the exhaust, particularly in regard to young children who are at high risk because of their continuing lung development. Using human airway epithelial cells obtained from young children, we compared the effects of exposure to exhaust generated by a diesel engine with Euro V/VI emission controls running on conventional diesel (ultra-low-sulfur mineral diesel, ULSD), soy biodiesel (B100), or a 20% blend of soy biodiesel with diesel (B20). The exhaust output of biodiesel was found to contain significantly more respiratory irritants, including NOx, CO, and CO2, and a larger overall particle mass. Exposure to biodiesel exhaust resulted in significantly greater cell death and a greater release of immune mediators compared to both air controls and ULSD exhaust. These results have concerning implications for potential global health impacts, particularly for the pediatric population.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Biocombustibles , Niño , Preescolar , Células Epiteliales , Gasolina , Humanos , Minerales , Material Particulado
6.
J Therm Biol ; 86: 102433, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31789230

RESUMEN

The thermal microenvironments of corals is a topic of current interest given their relationship to coral bleaching. We present computational fluid dynamics (CFD) model of corals with both smooth and rugged polyp surface topographies for two species of massive corals (Leptastrea purpurea and Platygyra sinensis) in order to predict their microscale surface warming. This study explores whether variation in polyp depth (PD) may directly effect a coral overall surface area-to-volume (A/V) ratio and consequently its surface warming. Validation of our models was made against detailed laboratory measurements of coral surface warming and thermal boundary layer thickness. Our results suggested that while differences in surface warming exist between smooth surfaces and surfaces covered in micro-polyps (5 mm depth), the variation in terms of surface warming is small (~0.18-0.19∘C) and it can be largely attributed to increasing A/V ratios. Our results demonstrated good agreement with measurements of surface temperatures on living corals and that ignoring the presence of polyps by modelling heat transfer associated with a smooth surface makes no material difference to the values obtained or the interpretation of the processes leading to surface warming.


Asunto(s)
Antozoos , Modelos Teóricos , Conductividad Térmica , Animales , Calor , Hidrodinámica , Propiedades de Superficie
7.
Langmuir ; 34(21): 6307-6313, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29737855

RESUMEN

This work examines the ejection of droplets from a bursting gas bubble on a free liquid surface, both experimentally and numerically. We explore the physical processes which govern the bursting of bubbles and the subsequent formation of "jet" droplets. We present new relationships regarding the dependence of jet drop formation on bubble diameter. Furthermore, we propose a new dimensionless parameter to describe the region of properties where "jet" drops will occur. This parameter, termed the droplet number ( Dn), complements existing parameters defining jet drop formation, namely, a maximum Ohnesorge number and a maximum Bond number.

8.
Am J Physiol Lung Cell Mol Physiol ; 313(1): L67-L79, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28360111

RESUMEN

Electronic cigarette usage is increasing worldwide, yet there is a paucity of information on the respiratory health effects of electronic cigarette aerosol exposure. This study aimed to assess whether exposure to electronic cigarette (e-cigarette) aerosol would alter lung function and pulmonary inflammation in mice and to compare the severity of any alterations with mice exposed to mainstream tobacco smoke. Female BALB/c mice were exposed for 8 wk to tobacco smoke, medical air (control), or one of four different types of e-cigarette aerosol. E-cigarette aerosols varied depending on nicotine content (0 or 12 mg/ml) and the main excipient (propylene glycol or glycerin). Twenty-four hours after the final exposure, we measured pulmonary inflammation, lung volume, lung mechanics, and responsiveness to methacholine. Mice exposed to tobacco cigarette smoke had increased pulmonary inflammation and responsiveness to methacholine compared with air controls. Mice exposed to e-cigarette aerosol did not have increased inflammation but did display decrements in parenchymal lung function at both functional residual capacity and high transrespiratory pressures. Mice exposed to glycerin-based e-cigarette aerosols were also hyperresponsive to methacholine regardless of the presence or absence of nicotine. This study shows, for the first time, that exposure to e-cigarette aerosol during adolescence and early adulthood is not harmless to the lungs and can result in significant impairments in lung function.


Asunto(s)
Aerosoles/efectos adversos , Sistemas Electrónicos de Liberación de Nicotina/efectos adversos , Inflamación/patología , Inflamación/fisiopatología , Pulmón/patología , Pulmón/fisiopatología , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Elasticidad , Femenino , Capacidad Residual Funcional/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Mediadores de Inflamación/metabolismo , Cloruro de Metacolina/farmacología , Ratones Endogámicos BALB C , Tamaño de los Órganos , Pletismografía , Hipersensibilidad Respiratoria/complicaciones , Hipersensibilidad Respiratoria/patología , Hipersensibilidad Respiratoria/fisiopatología , Fumar/efectos adversos , Tórax/patología
11.
Environ Toxicol ; 31(1): 44-57, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25045158

RESUMEN

Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size.


Asunto(s)
Apoptosis/efectos de los fármacos , Biocombustibles/análisis , Mediadores de Inflamación/metabolismo , Emisiones de Vehículos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quimiocina CCL5/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Modelos Lineales , Tamaño de la Partícula , Material Particulado/química , Material Particulado/toxicidad
12.
Respirology ; 20(7): 1034-45, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26179557

RESUMEN

Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure.


Asunto(s)
Biocombustibles/efectos adversos , Material Particulado , Emisiones de Vehículos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Animales , Monitoreo del Ambiente/métodos , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Salud Pública , Emisiones de Vehículos/análisis , Emisiones de Vehículos/prevención & control
13.
J Appl Toxicol ; 35(1): 41-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24477878

RESUMEN

Epidemiological studies indicate that exposure to diesel exhaust (DE) is associated with vascular-based disorders. To investigate the effect of DE on blood-brain barrier (BBB) function and integrity, 8-week-old BALB/c mice were randomized to DE in a cyclical treatment regimen over a 2-week period. Functional integrity of BBB was determined by considering brain parenchymal abundance of IgG within the hippocampal formation and cortex at 6 h and 24 h intervals following final exposure treatment. Neurovascular inflammation was expressed as the abundance of glial fibrillar acidic protein. Two doses of DE were studied and compared to air-only treated mice. Mice exposed to DE had substantially greater abundance of parenchymal IgG compared to control mice not exposed to DE. Increased parenchymal glial fibrillar acidic protein at 24 h post-DE exposure suggested heightened neurovascular inflammation. Our findings are proof-of-concept that inhalation of DE can compromise BBB function and support the broader contention that DE exposure may contribute to neurovascular disease risk.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiología , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Animales , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Capilares/efectos de los fármacos , Capilares/inmunología , Capilares/fisiología , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Corteza Cerebral/metabolismo , Circulación Cerebrovascular/efectos de los fármacos , Circulación Cerebrovascular/inmunología , Circulación Cerebrovascular/fisiología , Femenino , Proteína Ácida Fibrilar de la Glía/biosíntesis , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Hipocampo/metabolismo , Inmunoglobulina G/inmunología , Masculino , Ratones Endogámicos BALB C , Distribución Aleatoria
15.
Inhal Toxicol ; 26(7): 409-18, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24862975

RESUMEN

CONTEXT: Mice are commonly used in studies investigating the effects of diesel exhaust exposure on respiratory health. A plethora of studies in this field has resulted in a range of exposure protocols, from inhalation of diesel exhaust, to the administration (via various routes) of diesel exhaust particles in solution. OBJECTIVE: In this study, we compared the physiological consequences of short-term exposure to diesel exhaust via inhalation to those due to exposure to the same diesel exhaust particles suspended in solution and delivered intranasally. MATERIALS AND METHODS: Adult BALB/c mice were exposed to diesel exhaust via inhalation for 2 hours per day for 8 days. A representative, simultaneous sample of particles was collected and a second group of mice then exposed to them suspended in saline. A low and a high-dose were studied, with these matched based on respiratory parameters. Six and twenty-four hours after the last exposure we measured bronchoalveolar inflammation, lung volume, lung function and the amount of elemental carbon in alveolar macrophages. RESULTS: Exposure via either route elicited pulmonary inflammation and changes in lung function. We identified significant differences in response between the two routes of exposure, with mice exposed via inhalation generally displaying more realistic dose-response relationships. Mice exposed via intranasal instillation responded more variably, with little influence of dose. CONCLUSIONS: Our results suggest that selection of the route of exposure is of critical importance in studies such as this. Further, inhalation exposure, while more methodologically difficult, resulted in responses more akin to those seen in humans.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Neumonía/inducido químicamente , Mucosa Respiratoria/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Administración Intranasal , Animales , Cámaras de Exposición Atmosférica , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Instilación de Medicamentos , Pulmón/inmunología , Pulmón/fisiopatología , Macrófagos Alveolares/química , Macrófagos Alveolares/inmunología , Ratones Endogámicos BALB C , Material Particulado/administración & dosificación , Material Particulado/química , Material Particulado/toxicidad , Neumonía/inmunología , Neumonía/fisiopatología , Reproducibilidad de los Resultados , Pruebas de Función Respiratoria , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/fisiopatología , Pruebas de Toxicidad Subaguda
16.
Chemosphere ; 362: 142621, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880256

RESUMEN

BACKGROUND: Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS: Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION: These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.

17.
Antibiotics (Basel) ; 12(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36830196

RESUMEN

The production and use of antibiotics increased significantly after the Second World War due to their effectiveness against bacterial infections. However, bacterial resistance also emerged and has now become an important global issue. Those most in need are typically high-risk and include individuals who experience burns and other wounds, as well as those with pulmonary infections caused by antibiotic-resistant bacteria, such as Pseudomonas aeruginosa, Acinetobacter sp, and Staphylococci. With investment to develop new antibiotics waning, finding and developing alternative therapeutic strategies to tackle this issue is imperative. One option remerging in popularity is bacteriophage (phage) therapy. This review focuses on Staphylococcus aureus and how it has developed resistance to antibiotics. It also discusses the potential of phage therapy in this setting and its appropriateness in high-risk people, such as those with cystic fibrosis, where it typically forms a biofilm.

18.
Chemosphere ; 310: 136873, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36252896

RESUMEN

To address climate change concerns, and reduce the carbon footprint caused by fossil fuel use, it is likely that blend ratios of renewable biodiesel with commercial mineral diesel fuel will steadily increase, resulting in biodiesel use becoming more widespread. Exhaust toxicity of unblended biodiesels changes depending on feedstock type, however the effect of feedstock on blended fuels is less well known. The aim of this study was to assess the impact of biodiesel feedstock on exhaust toxicity of 20% blended biodiesel fuels (B20). Primary human airway epithelial cells were exposed to exhaust diluted 1/15 with air from an engine running on conventional ultra-low sulfur diesel (ULSD) or 20% blends of soy, canola, waste cooking oil (WCO), tallow, palm or cottonseed biodiesel in diesel. Physico-chemical exhaust properties were compared between fuels and the post-exposure effect of exhaust on cellular viability and media release was assessed 24 h later. Exhaust properties changed significantly between all fuels with cottonseed B20 being the most different to both ULSD and its respective unblended biodiesel. Exposure to palm B20 resulted in significantly decreased cellular viability (96.3 ± 1.7%; p < 0.01) whereas exposure to soy B20 generated the greatest number of changes in mediator release (including IL-6, IL-8 and TNF-α, p < 0.05) when compared to air exposed controls, with palm B20 and tallow B20 closely following. In contrast, canola B20 and WCO B20 were the least toxic with only mediators G-CSF and TNF-α being significantly increased. Therefore, exposure to palm B20, soy B20 and tallow B20 were found to be the most toxic and exposure to canola B20 and WCO B20 the least. The top three most toxic and the bottom three least toxic B20 fuels are consistent with their unblended counterparts, suggesting that feedstock type greatly impacts exhaust toxicity, even when biodiesel only comprises 20% of the fuel.


Asunto(s)
Biocombustibles , Material Particulado , Humanos , Biocombustibles/toxicidad , Biocombustibles/análisis , Material Particulado/análisis , Factor de Necrosis Tumoral alfa , Aceite de Semillas de Algodón , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Gasolina/toxicidad , Minerales
19.
Toxics ; 11(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36977055

RESUMEN

Despite their increasing popularity, and Australia's unique regulatory environment, how and why Australian adults use e-cigarettes and their perceptions of their safety, efficacy and regulation have not been extensively reported before. In this study, we screened 2217 adult Australians with the aim of assessing these questions in a sample of current or former e-cigarette users. A total of 505 out of 2217 respondents were current or former e-cigarette users, with only these respondents completing the full survey. Key findings of this survey included the high proportion of respondents who indicated they were currently using e-cigarettes (307 out of 2217 = 13.8%), and the high proportion of current e-cigarette users that were also smokers (74.6%). The majority of respondents used e-liquids containing nicotine (70.3%), despite it being illegal in Australia without a prescription, and the majority bought their devices and liquids in Australia (65.7%). Respondents reported using e-cigarettes in a variety of places, including inside the home, inside public places (where it is illegal to smoke tobacco cigarettes), and around other people-which has implications for second and third hand exposures. A significant proportion of current e-cigarette users (30.6%) thought that e-cigarettes were completely safe to use long-term, although in general, there was a large amount of uncertainty/ambivalence with respect to perceptions of e-cigarette safety and efficacy as smoking cessation tools. This study shows that e-cigarette use is common in Australia, and that appropriate dissemination of unbiased research findings on their safety and efficacy in smoking cessation is urgently required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA