Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202416619, 2024 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-39503578

RESUMEN

Aqueous zinc metal batteries (AZMBs) are promising for grid-scale energy storage due to their low cost and high safety. However, poor stability and an unfavorable freezing point hinder their actual application. Herein, a ternary salts-based high-entropy electrolyte (HEE) composed of Zn0.2Na0.4Li0.4(ClO4)1.2·7H2O is proposed to address the above issues. The addition of perchlorate salts with different cations reduces the size of ion clusters, significantly increases the solvation structure species, and promotes the anion-rich Zn2+ solvation structures, resulting in an enlarged electrochemical stability window, favorable viscosity and ionic conductivity, and low freezing point. Furthermore, characterization and calculations confirm that multiple types of solvation structures effectively increase the electrolyte entropy. As a consequence, the Zn/Zn symmetric cells in HEE can sustainably cycle for at least 1000 hours and 1500 hours under room and subzero temperatures, respectively. The Na0.33V2O5/Zn and polyaniline/Zn full cells can even last for 30000 and 20000 cycles without capacity decay at -20 °C, respectively. The pouch cells employing HEE deliver promising capacity and stability, even at high mass loading of active materials. This strategy of introducing multiple salts with different cations to construct a high-entropy environment provides a facile approach for high-performance and long-lifespan AZMBs across a wide temperature range.

2.
Chem Soc Rev ; 49(6): 1887-1931, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32101197

RESUMEN

This review focuses on the discussion of the latest progress and remaining challenges in selected metal-free photocatalysts for hydrogen production. The scope of this review is limited to the metal-free elemental photocatalysts (i.e. B, C, P, S, Si, Se etc.), binary photocatalysts (i.e. BC3, B4C, CxNy, h-BN etc.) and their heterojunction, ternary photocatalysts (i.e. BCN) and their heterojunction, and different types of organic photocatalysts (i.e. linear, covalent organic frameworks, microporous polymer, covalent triazine frameworks etc.) and their heterostructures. Following a succinct depiction of the latest progress in hydrogen evolution on these photocatalysts, discussion has been extended to the potential strategies that are deemed necessary to attain high quantum efficiency and high solar-to-hydrogen (STH) conversion efficiency. Issues with reproducibility and the disputes in reporting the hydrogen evolution rate have been also discussed with recommendations to overcome them. A few key factors are highlighted that may facilitate the scalability of the photocatalyst from microscale to macroscale production in meeting the targeted 10% STH. This review is concluded with additional perspectives regarding future research in fundamental materials aspects of high efficiency photocatalysts followed by six open questions that may need to be resolved by forming a global hydrogen taskforce in order to translate bench-top research into large-scale production of hydrogen.

3.
Adv Sci (Weinh) ; 7(23): 2002563, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304764

RESUMEN

The glorious charge transfer efficiency of photoanode is an important factor for efficient photoelectrochemical (PEC) water oxidation. However, it is often limited by slow kinetics of oxygen evolution reaction. Herein, a dual transition metal-based metal-organic frameworks (MOF) cocatalyst, Fe@Ni-MOF, is introduced into a titanium-doped hematite (Fe2O3:Ti) photoanode. The combination of Ni and Fe can optimize the filling of 3d orbitals. Moreover, the introduction of Fe donates electrons to Ni in the MOF structure, thus, suppressing the irreversible (long-life-time) oxidation of Ni2+ into Ni3+. The resulting Fe@Ni-MOF/Fe2O3:Ti photoanode exhibits ∼threefold enhancement in the photocurrent density at 1.23 V versus the reversible hydrogen electrode. Kinetic analysis of the PEC water oxidation processes indicates that this performance improvement is primarily due to modulating the charge transfer efficiency of hematite photoanode. Further results show that a single transition metal-based MOF cocatalyst, Ni-MOF, exhibits slow charge transfer in spite of a reduction in surface charge recombination, resulting in a smaller charge transfer efficiency. These findings provide new insights for the development of photoelectrodes decorated with MOFs.

4.
ACS Nano ; 11(10): 10347-10356, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28898580

RESUMEN

Through a gelation-solvothermal method without heteroadditives, Cu-Sn-S composites self-assemble to form nanotubes, sub-nanotubes, and nanoparticles. The nanotubes with a Cu3-4SnS4 core and Cu2SnS3 shell can tolerate long cycles of expansion/contraction upon lithiation/delithiation, retaining a charge capacity of 774 mAh g-1 after 200 cycles with a high initial Coulombic efficiency of 82.5%. The importance of the Cu component for mitigation of the volume expansion and structural evolution upon lithiation is informed by density functional theory calculations. The self-generated template and calculated results can inspire the design of analogous Cu-M-S (M = metal) nanotubes for lithium batteries or other energy storage systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA