Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175402

RESUMEN

Plastics-based materials have a high carbon footprint, and their disposal is a considerable problem for the environment. Biodegradable bioplastics represent an alternative on which most countries have focused their attention to replace of conventional plastics in various sectors, among which food packaging is the most significant one. The evaluation of the optimal end-of-life process for bioplastic waste is of great importance for their sustainable use. In this review, the advantages and limits of different waste management routes-biodegradation, mechanical recycling and thermal degradation processes-are presented for the most common categories of biopolymers on the market, including starch-based bioplastics, PLA and PBAT. The analysis outlines that starch-based bioplastics, unless blended with other biopolymers, exhibit good biodegradation rates and are suitable for disposal by composting, while PLA and PBAT are incompatible with this process and require alternative strategies. The thermal degradation process is very promising for chemical recycling, enabling building blocks and the recovery of valuable chemicals from bioplastic waste, according to the principles of a sustainable and circular economy. Nevertheless, only a few articles have focused on this recycling process, highlighting the need for research to fully exploit the potentiality of this waste management route.


Asunto(s)
Compostaje , Administración de Residuos , Plásticos/metabolismo , Biopolímeros/metabolismo , Reciclaje , Almidón , Poliésteres
2.
Bioresour Technol ; 314: 123800, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32684320

RESUMEN

Spent coffee grounds (SCG) are an important waste product millions of tons generated from coffee consumption and could be effectively utilized for various applications due to their high organic content. SCG can be used as a potential feedstock to develop coffee-based biorefinery towards value-added products generation through various biotechnological processes. Considerable developments have been reported on emerging SCG-based processes/products in various environmental fields such as removal of heavy metals and cationic dyes and in wastewater treatment. In addition, SCG are also utilized to produce biochar and biofuels. This review addressed the details of innovative processes used to produce polymers and catalysts from SCG. Moreover, the application of these developed products is provided and future directions of the circular economy for SCG utilization.


Asunto(s)
Café , Metales Pesados , Biocombustibles , Biopolímeros , Biotecnología
3.
Bioresour Technol ; 256: 102-109, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29433044

RESUMEN

This study reports the implications of using spent coffee hydrochar as substrate for anaerobic digestion (AD) processes. Three different spent coffee hydrochars produced at 180, 220 and 250 °C, 1 h residence time, were investigated for their biomethane potential in AD process inoculated with cow manure. Spent coffee hydrochars were characterized in terms of ultimate, proximate and higher heating value (HHV), and their theoretical bio-methane yield evaluated using Boyle-Buswell equation and compared to the experimental values. The results were then analyzed using the modified Gompertz equation to determine the main AD evolution parameters. Different hydrochar properties were related to AD process performances. AD of spent coffee hydrochars produced at 180 °C showed the highest biomethane production rate (46 mL CH4/gVS.d), a biomethane potential of 491 mL/gVS (AD lasting 25 days), and a biomethane gas daily composition of about 70%.


Asunto(s)
Biocombustibles , Café , Estiércol , Anaerobiosis , Animales , Femenino , Metano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA