Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Commun Signal ; 21(1): 3, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604713

RESUMEN

SCARB1 belongs to class B of Scavenger receptors (SRs) that are known to be involved in binding and endocytosis of various pathogens. SRs have emerging role in regulating innate immunity and host-pathogen interactions by acting in co-ordination with Toll-like receptors.Query Little is known about the function of SCARB1 in milk-derived mammary epithelial cells (MECs). This study reports the role of SCARB1 in infection and its potential association in TLR4 signaling on bacterial challenge in Goat mammary epithelial cells (GMECs). The novelty in the establishment of MEC culture lies in the method that aims to enhance the viability of the cells with intact characteristics upto a higher passage number. We represent MEC culture to be used as a potential infection model for deeper understanding of animal physiology especially around the mammary gland. On E.coli challenge the expression of SCARB1 was significant in induced GMECs at 6 h. Endoribonuclease-esiRNA based silencing of SCARB1 affects the expression of TLR4 and its pathways i.e. MyD88 and TRIF pathways on infection. Knockdown also affected the endocytosis of E.coli in GMECs demonstrating that E.coli uses SCARB1 function to gain entry in cells. Furthermore, we predict 3 unique protein structures of uncharacterized SCARB1 (Capra hircus) protein. Overall, we highlight SCARB1 as a main participant in host defence and its function in antibacterial advances to check mammary gland infections. Video Abstract.


Asunto(s)
Células Epiteliales , Infecciones por Escherichia coli , Glándulas Mamarias Animales , Receptores Depuradores , Receptor Toll-Like 4 , Animales , Endocitosis , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Escherichia coli , Receptores Depuradores/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Cabras , Glándulas Mamarias Animales/microbiología , Infecciones por Escherichia coli/veterinaria
2.
BMC Genomics ; 23(1): 176, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246027

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse roles in many biological processes including mammary gland development. However, little is known about their roles in the bovine lactation process. RESULTS: To identify and characterize the roles of lncRNAs in bovine lactation, high throughput RNA sequencing data from Jersey (high milk yield producer), and Kashmiri cattle (low milk yield producer) were utilized. Transcriptome data from three Kashmiri and three Jersey cattle throughout their lactation stages were utilized for differential expression analysis. At each stage (early, mid and late) three samples were taken from each breed. A total of 45 differentially expressed lncRNAs were identified between the three stages of lactation. The differentially expressed lncRNAs were found co-expressed with genes involved in the milk synthesis processes such as GPAM, LPL, and ABCG2 indicating their potential regulatory effects on milk quality genes. KEGG pathways analysis of potential cis and trans target genes of differentially expressed lncRNAs indicated that 27 and 48 pathways were significantly enriched between the three stages of lactation in Kashmiri and Jersey respectively, including mTOR signaling, PI3K-Akt signaling, and RAP1 signaling pathways. These pathways are known to play key roles in lactation biology and mammary gland development. CONCLUSIONS: Expression profiles of lncRNAs across different lactation stages in Jersey and Kashmiri cattle provide a valuable resource for the study of the regulatory mechanisms involved in the lactation process as well as facilitate understanding of the role of lncRNAs in bovine lactation biology.


Asunto(s)
Leche , ARN Largo no Codificante , Animales , Bovinos/genética , Células Epiteliales/metabolismo , Femenino , Lactancia/genética , Lactancia/metabolismo , Glándulas Mamarias Animales/metabolismo , Leche/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma
3.
Microb Pathog ; 162: 105367, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34963641

RESUMEN

Mastitis or inflammation of the mammary gland is a highly economic and deadly alarming disease for the dairy sector as well as policymakers caused by microbial infection. Transcriptomic and proteomic approaches have been widely employed to identify the underlying molecular mechanisms of bacterial infections in the mammary gland. Numerous differentially expressed mRNAs, miRNAs, and proteins together with their associated signaling pathways have been identified during bacterial infection, paving the way for analysis of their biological functions. Long noncoding RNAs (lncRNAs) are important regulators of multiple biological processes. However, little is known regarding their role in bacterial infection in mammary epithelial cells. Hence, RNA-sequencing was performed by infecting primary mammary epithelial cells (pMECs) with both gram-negative (E. coli) and gram-positive bacteria (S. aureus). Using stringent pipeline, a set of 1957 known and 1175 novel lncRNAs were identified, among which, 112 lncRNAs were found differentially expressed in bacteria challenged PMECs compared with the control. Additionally, potential targets of the lncRNAs were predicted in cis- and trans-configuration. KEGG analysis revealed that DE lncRNAs were associated with at least 15 immune-related pathways. Therefore, our study revealed that bacterial challenge triggers the expression of lncRNAs associated with immune response and defense mechanisms in goat mammary epithelial cells.


Asunto(s)
Infecciones Bacterianas , ARN Largo no Codificante , Animales , Infecciones Bacterianas/veterinaria , Células Epiteliales , Escherichia coli , Femenino , Perfilación de la Expresión Génica , Cabras , Glándulas Mamarias Animales , Proteómica , ARN Largo no Codificante/genética , Staphylococcus aureus
4.
Cell Commun Signal ; 20(1): 2, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980167

RESUMEN

Scavenger receptors belong to a superfamily of proteins that are structurally heterogeneous and encompass the miscellaneous group of transmembrane proteins and soluble secretory extracellular domain. They are functionally diverse as they are involved in various disorders and biological pathways and their major function in innate immunity and homeostasis. Numerous scavenger receptors have been discovered so far and are apportioned in various classes (A-L). Scavenger receptors are documented as pattern recognition receptors and known to act in coordination with other co-receptors such as Toll-like receptors in generating the immune responses against a repertoire of ligands such as microbial pathogens, non-self, intracellular and modified self-molecules through various diverse mechanisms like adhesion, endocytosis and phagocytosis etc. Unlike, most of the scavenger receptors discussed below have both membrane and soluble forms that participate in scavenging; the role of a potential scavenging receptor Angiotensin-Converting Enzyme-2 has also been discussed whereby only its soluble form might participate in preventing the pathogen entry and replication, unlike its membrane-bound form. This review majorly gives an insight on the functional aspect of scavenger receptors in host defence and describes their mode of action extensively in various immune pathways involved with each receptor type. Video abstract.


Asunto(s)
Inmunidad Innata , Receptores Toll-Like , Endocitosis , Fagocitosis , Receptores Depuradores/metabolismo
5.
J Appl Toxicol ; 42(1): 52-72, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34060108

RESUMEN

Nanotechnology has revolutionized diverse fields, which include agriculture, the consumer market, medicine, and other fields. Widespread use of nanotechnology-based products has led to increased prevalence of these novel formulations in the environment, which has raised concerns regarding their deleterious effects. The application of nanotechnology-based formulations into clinical use is hampered by the lack of the availability of effective in vitro systems, which could accurately assess their in vivo toxic effects. A plethora of studies has shown the hazardous effects of nanoparticle-based formulations in two-dimensional in vitro cell cultures and animal models. These have some associated disadvantages when used for the evaluation of nano-toxicity. Organoid technology fills the space between existing two-dimensional cell line culture and in vivo models. The uniqueness of organoids over other systems for evaluating toxicity caused by nano-drug formulation includes them being a co-culture of diverse cell types, dynamic flow within them that simulates the actual flow of nanoparticles within biological systems, extensive cell-cell, cell-matrix interactions, and a tissue-like morphology. Thus, it mimics the actual tissue microenvironment and, subsequently, provides an opportunity to study drug metabolism and toxico-dynamics of nanotechnology-based novel formulations. The use of organoids in the evaluation of nano-drug toxicity is in its infancy. A limited number of studies conducted so far have shown good predictive value and efficiently significant data correlation with the clinical trials. In this review, we attempt to introduce organoids of the liver, lungs, brain, kidney intestine, and potential applications to evaluate toxicity caused by nanoparticles.


Asunto(s)
Nanomedicina/estadística & datos numéricos , Nanopartículas/toxicidad , Organoides/efectos de los fármacos , Pruebas de Toxicidad , Animales , Humanos
6.
Biol Proced Online ; 22: 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32467674

RESUMEN

ABSTRACT: Circular RNAs (circRNAs) have emerged as a universal novel class of eukaryotic non-coding RNA (ncRNA) molecules and are becoming a new research hotspot in RNA biology. They form a covalent loop without 5' cap and 3' tail, unlike their linear counterparts. Endogenous circRNAs in mammalian cells are abundantly conserved and discovered so far. In the biogenesis of circRNAs exonic, intronic, reverse complementary sequences or RNA-binding proteins (RBPs) play a very important role. Interestingly, the majority of them are highly conserved, stable, resistant to RNase R and show developmental-stage/tissue-specific expression. CircRNAs play multifunctional roles as microRNA (miRNA) sponges, regulators of transcription and post-transcription, parental gene expression and translation of proteins in various diseased conditions. Growing evidence shows that circRNAs play an important role in neurological disorders, atherosclerotic vascular disease, and cancer and potentially serve as diagnostic or predictive biomarkers due to its abundance in various biological samples. Here, we review the biogenesis, properties, functions, and impact of circRNAs on various diseases.

7.
BMC Vet Res ; 14(1): 180, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884179

RESUMEN

BACKGROUND: Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a zoonotic pathogen responsible for severe intestinal pathology in young chickens. Natural resistance-associated macrophage protein (NRAMP) family has been shown to be associated with resistance to intracellular pathogens, including Salmonella Typhimurium. The role of NRAMP proteins in macrophage defence against microbial infection has been ascribed to changes in the metal-ion concentrations inside the bacteria-containing phagosomes. The present study was conducted to investigate tissue-specific (liver, spleen and caecum) expression kinetics of NRAMP gene family (NRAMP1 and NRAMP2) in broilers from day 0 to day 15 after Salmonella Typhimurium challenge concomitant to clinical, blood biochemical and immunological parameters survey. RESULTS: Clinical symptoms appeared 4 days post-infection (dpi) in infected birds. Symptoms like progressive weakness, anorexia, diarrhoea and lowering of the head were seen in infected birds one-week post-infection. On postmortem examination, liver showed congestion, haemorrhage and necrotic foci on the surface, while as the spleen, lungs and intestines revealed congestion and haemorrhages. Histopathological alterations were principally found in liver comprising of necrosis, reticular endothelial hyperplasia along with mononuclear cell and heterophilic infiltration. Red Blood Cell (RBC) count, Haemoglobin (Hb) and Packed Cell Volume (PCV) decreased significantly (P < 0.05) in blood while heterophil counts increased up to 7 days post-infection. Serum glucose, aspartate transaminase (AST) and alanine transaminase (ALT) enzymes concentrations increased significantly throughout the study. A gradual increase of specific humoral IgG response confirmed Salmonella infection. Meanwhile, expression of NRAMP1 and NRAMP2 genes was differentially regulated after infection in tissues such as liver, spleen and caecum known to be the target of Salmonella Typhimurium replication in the chicken. CONCLUSION: Thus the specific roles of NRAMP1 and NRAMP2 genes in Salmonella Typhimurium induced disease may be supposed from their differential expression according to tissues and timing after per os infection. However, these roles remain to be analyzed related to the severity of the disease which can be estimated by blood biochemistry and immunological parameters.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Pollos , Enfermedades de las Aves de Corral/metabolismo , Salmonelosis Animal/metabolismo , Salmonella typhimurium , Animales , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología
8.
Biol Proced Online ; 19: 3, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28465674

RESUMEN

Immune responses combat various infectious agents by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. The polygenic responses to these external stimuli are temporally and coordinately regulated. Specific lncRNAs are induced to modulate innate and adaptive immune responses which can function through various target interactions like RNA-DNA, RNA-RNA, and RNA-protein interaction and hence affect the immunogenic regulation at various stages of gene expression. LncRNA are found to be present in various immune cells like monocytes, macrophages, dendritic cells, neutrophils, T cells and B cells. They have been shown to be involved in many biological processes, including the regulation of the expression of genes, the dosage compensation and genomics imprinting, but the knowledge how lncRNAs are regulated and how they alter cell differentiation/function is still obscure. Further dysregulation of lncRNA has been seen in many diseases, but as yet very less research has been carried out to understand the role of lncRNAs in regulation during host-pathogens interactions. In this review, we summarize the functional developments and mechanism of action of lncRNAs, in immunity and defense of host against pathogens.

10.
Int Immunopharmacol ; 126: 111213, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37995572

RESUMEN

Mastitis, an inflammatory disease of the mammary gland, imposes a significant financial burden on the dairy sector. However, the specific molecular mechanisms underlying their interactions with goat mammary epithelial cells (GMECs) remain poorly understood. This study aimed to investigate the transcriptomic response of GMECs during infection with E. coli and S. aureus, providing insights into the host-pathogen interactions. Differential expression of gene (DEGs) analysis was done to find genes and pathways dysregulated in the wake of infection. E. coli infection triggered a robust upregulation of immune response genes, including pro-inflammatory chemokines and cytokines as well as genes involved in tissue repair and remodeling. Conversely, S. aureus infection showed a more complex pattern, involving the activation of immune-related gene as well as those involved in autophagy, apoptosis and tissue remodeling. Furthermore, several key pathways, such as Toll-like receptor signaling and cytokine-cytokine receptor interaction, were differentially modulated in response to each pathogen. Understanding the specific responses of GMECs to these pathogens will provide a foundation for understanding the complex dynamics of infection and host response, offering potential avenues for the development of novel strategies to prevent and treat bacterial infections in both animals and humans.


Asunto(s)
Infecciones por Escherichia coli , Mastitis Bovina , Infecciones Estafilocócicas , Humanos , Femenino , Animales , Bovinos , Escherichia coli/fisiología , Staphylococcus aureus/fisiología , Regulación de la Expresión Génica , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Perfilación de la Expresión Génica , Citocinas/metabolismo , Células Epiteliales/metabolismo
11.
PLoS One ; 14(2): e0211773, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30721247

RESUMEN

Jersey and Kashmiri cattle are important dairy breeds that contribute significantly to the total milk production of the Indian northern state of Jammu and Kashmir. The Kashmiri cattle germplasm has been extensively diluted through crossbreeding with Jersey cattle with the goal of enhancing its milk production ability. However, crossbred animals are prone to diseases resulting to unsustainable milk production. This study aimed to provide a comprehensive transcriptome profile of mammary gland epithelial cells at different stages of lactation and to find key differences in genes and pathways regulating milk traits between Jersey and Kashmiri cattle. Mammary epithelial cells (MEC) isolated from milk obtained from six lactating cows (three Jersey and three Kashmiri cattle) on day 15 (D15), D90 and D250 in milk, representing early, mid and late lactation, respectively were used. RNA isolated from MEC was subjected to next-generation RNA sequencing and bioinformatics processing. Casein and whey protein genes were found to be highly expressed throughout the lactation stages in both breeds. Largest differences in differentially expressed genes (DEG) were between D15 vs D90 (1,805 genes) in Kashmiri cattle and, D15 vs D250 (3,392 genes) in Jersey cattle. A total of 1,103, 1,356 and 1,397 genes were differentially expressed between Kashmiri and Jersey cattle on D15, D90 and D250, respectively. Antioxidant genes like RPLPO and RPS28 were highly expressed in Kashmiri cattle. Differentially expressed genes in both Kashmiri and Jersey were enriched for multicellular organismal process, receptor activity, catalytic activity, signal transducer activity, macromolecular complex and developmental process gene ontology terms. Whereas, biological regulation, endopeptidase activity and response to stimulus were enriched in Kashmiri cattle and, reproduction and immune system process were enriched in Jersey cattle. Most of the pathways responsible for regulation of milk production like JAK-STAT, p38 MAPK pathway, PI3 kinase pathway were enriched by DEG in Jersey cattle only. Although Kashmiri has poor milk production efficiency, the present study suggests possible physicochemical and antioxidant properties of Kashmiri cattle milk that needs to be further explored.


Asunto(s)
Células Epiteliales/metabolismo , Regulación de la Expresión Génica/fisiología , Lactancia/fisiología , Glándulas Mamarias Animales/metabolismo , Transducción de Señal/fisiología , Animales , Bovinos , Femenino , Leche , Especificidad de la Especie
12.
Poult Sci ; 98(5): 2008-2013, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597054

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a primary avian pathogen responsible for severe intestinal pathology in younger chickens and economic losses to poultry industry. Furthermore, S. Typhimurium is also able to cause infection in humans, characterized by acute gastrointestinal disease. A study was conducted to investigate antibody response and expression kinetics of interferon gamma (IFNγ), interleukin (IL-12, and IL-18) genes in broiler chicken at 0, 1, 3, 5, 7, 9, 11, 13, and 15 D post infection following experimental infection of S. Typhimurium. Immunological studies showed higher titres of IgG and IgM in the infected group as compared to the age-matched un-infected control group. The Real-Time PCR-based gene expression analysis revealed significant increase of IFNγ, IL-12, and IL-18 mRNA levels in the infected group as compared to their respective controls (P < 0.05). The present study shall help in understanding the immune responses in birds, thus allowing development of more effective vaccines and vaccination strategies.


Asunto(s)
Pollos , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/inmunología , Salmonelosis Animal/genética , Salmonelosis Animal/inmunología , Salmonella typhimurium/fisiología , Animales , Anticuerpos Antibacterianos/sangre , Formación de Anticuerpos , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Expresión Génica , Perfilación de la Expresión Génica/veterinaria , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Enfermedades de las Aves de Corral/microbiología , ARN Mensajero/genética , Salmonelosis Animal/microbiología
13.
Noncoding RNA Res ; 1(1): 43-50, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30159410

RESUMEN

Recent RNA sequencing studies have revealed that most of the human genome is transcribed, but very little of the total transcriptomes has the ability to encode proteins. Long non-coding RNAs (lncRNAs) are non-coding transcripts longer than 200 nucleotides. Members of the non-coding genome include microRNA (miRNA), small regulatory RNAs and other short RNAs. Most of long non-coding RNA (lncRNAs) are poorly annotated. Recent recognition about lncRNAs highlights their effects in many biological and pathological processes. LncRNAs are dysfunctional in a variety of human diseases varying from cancerous to non-cancerous diseases. Characterization of these lncRNA genes and their modes of action may allow their use for diagnosis, monitoring of progression and targeted therapies in various diseases. In this review, we summarize the functional perspectives as well as the mechanism of action of lncRNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA