Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 293(33): 12949-12959, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29903911

RESUMEN

The World Health Organization(WHO) has reported a worldwide surge in cases of cholera caused by the intestinal pathogen Vibrio cholerae, and, combined, such surges have claimed several million lives, mostly in early childhood. Elevated cAMP production in intestinal epithelial cells challenged with cholera toxin (CTX) results in diarrhea due to chloride transport by a cAMP-activated channel, the cystic fibrosis transmembrane conductance regulator (CFTR). However, the identity of the main cAMP-producing proteins that regulate CFTR in the intestine and may be relevant for secretory diarrhea is unclear. Here, using RNA-Seq to identify the predominant AC isoform in mouse and human cells and extensive biochemical analyses for further characterization, we found that the cAMP-generating enzyme adenylate cyclase 6 (AC6) physically and functionally associates with CFTR at the apical surface of intestinal epithelial cells. We generated epithelium-specific AC6 knockout mice and demonstrated that CFTR-dependent fluid secretion is nearly abolished in AC6 knockout mice upon CTX challenge in ligated ileal loops. Furthermore, loss of AC6 function dramatically impaired CTX-induced CFTR activation in human and mouse intestinal spheroids. Our finding that the CFTR-AC6 protein complex is the key mediator of CTX-associated diarrhea may facilitate development of antidiarrheal agents to manage cholera symptoms and improve outcomes.


Asunto(s)
Adenilil Ciclasas/metabolismo , Cólera/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Complejos Multiproteicos/metabolismo , Vibrio cholerae/metabolismo , Adenilil Ciclasas/genética , Animales , Línea Celular , Cólera/genética , Cólera/patología , Toxina del Cólera/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Diarrea/genética , Diarrea/metabolismo , Diarrea/patología , Células Epiteliales/microbiología , Células Epiteliales/patología , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Vibrio cholerae/patogenicidad
2.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L529-L543, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351449

RESUMEN

Cystic fibrosis (CF) is the most common life-shortening genetic disease affecting ~1 in 3,500 of the Caucasian population. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. To date, more than 2,000 CFTR mutations have been identified, which produce a wide range of phenotypes. The CFTR protein, a chloride channel, is normally expressed on epithelial cells lining the lung, gut, and exocrine glands. Mutations in CFTR have led to pleiotropic effects in CF patients and have resulted in early morbidity and mortality. Research has focused on identifying small molecules, or modulators, that can restore CFTR function. In recent years, two modulators, ivacaftor (Kalydeco) and lumacaftor/ivacaftor (Orkambi), have been approved by the U.S. Food and Drug Administration to treat CF patients with certain CFTR mutations. The development of these modulators has served as proof-of-concept that targeting CFTR by modulators is a viable therapeutic option. Efforts to discover new modulators that could deliver a wider and greater clinical benefit are still ongoing. However, traditional randomized controlled trials (RCTs) require large numbers of patients and become impracticable to test the modulators' efficacy in CF patients with CFTR mutations at frequencies much lower than 1%, suggesting the need for personalized medicine in these CF patients.


Asunto(s)
Agonistas de los Canales de Cloruro/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/historia , Fibrosis Quística/terapia , Terapia Genética , Mutación , Medicina de Precisión , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Historia del Siglo XXI , Humanos , Transporte Iónico , Fenotipo , Transducción de Señal
3.
JCI Insight ; 2(19)2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28978796

RESUMEN

Cystic fibrosis (CF) is a genetic disorder in which epithelium-generated fluid flow from the lung, intestine, and pancreas is impaired due to mutations disrupting CF transmembrane conductance regulator (CFTR) channel function. CF manifestations of the pancreas and lung are present in the vast majority of CF patients, and 15% of CF infants are born with obstructed gut or meconium ileus. However, constipation is a significantly underreported outcome of CF disease, affecting 47% of the CF patients, and management becomes critical in the wake of increasing life span of CF patients. In this study, we unraveled a potentially novel molecular role of a membrane-bound cyclic guanosine monophosphate-synthesizing (cGMP-synthesizing) intestinal enzyme, guanylate cyclase 2C (GCC) that could be targeted to ameliorate CF-associated intestinal fluid deficit. We demonstrated that GCC agonism results in functional rescue of murine F508del/F508del and R117H/R117H Cftr and CFTR mutants in CF patient-derived intestinal spheres. GCC coexpression and activation facilitated processing and ER exit of F508del CFTR and presented a potentially novel rescue modality in the intestine, similar to the CF corrector VX-809. Our findings identify GCC as a biological CFTR corrector and potentiator in the intestine.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Receptores de Enterotoxina/fisiología , Animales , Fibrosis Quística/enzimología , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Humanos , Mucosa Intestinal/metabolismo , Ratones Mutantes , Mutación , Organoides/metabolismo , Organoides/patología , Células Madre/metabolismo
4.
Exp Biol Med (Maywood) ; 241(6): 603-10, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26843517

RESUMEN

Polo-like kinase 3 (Plk3) is best known for its involvement in cell cycle checkpoint regulation following exposure to cytotoxicants or induction of DNA damage. Yet, Plk3 has also been implicated in roles beyond those of cellular responses to DNA damage. Here, we have investigated the proposition, suggested by the Plk literature, that Plk3 regulates cytoskeletal architecture and cell functions mediated by the cytoskeleton. To this end, we have assayed mouse embryonic fibroblasts (MEFs) generated from both Plk3 knockout and wild-type mice. In particular, we asked whether Plk3 is involved in actin fiber and microtubule integrity, cell migration, cell attachment, and/or cell invasion. Our results demonstrate that functional Plk3 is not critical for the regulation of cytoskeletal integrity, cell morphology, cell adhesion, or motility in MEFs.


Asunto(s)
Movimiento Celular , Citoesqueleto/metabolismo , Fibroblastos/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Animales , Adhesión Celular , Femenino , Ratones Noqueados
5.
Adv Healthc Mater ; 2(2): 334-42, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23184681

RESUMEN

In vivo, different cell types assemble in specific patterns to form functional tissues. Reproducing this process in vitro by designing scaffold materials to direct cells precisely to the right locations at the right time is important for the next generation of biomaterials. Here, using microarray amplification of natural directional persistence (MANDIP), simultaneous assembly of fibroblasts and endothelial cells is demonstrated by directing their long-range migration. Amplification of the directional persistence occurs through morphology-induced polarity and the asymmetric positioning of individual microsized adhesive islands that restrict lamellipodia attachment, and thus migration, to one preset direction. Quantitative analysis of cell migration on different MANDIP designs yields insight to the relative importance of the asymmetric island shapes and their arrangement. The approach enables spatial patterning of different cell types with micrometer-scale precision over large areas for investigation of cell-cell interactions within complex tissue architectures.


Asunto(s)
Movimiento Celular/fisiología , Polaridad Celular/fisiología , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Células Endoteliales/citología , Fibroblastos/citología , Ratones , Células 3T3 NIH
6.
J Mater Chem B ; 1(42): 5773-5777, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24466428

RESUMEN

Disparities in cellular behaviour between cultures of a single cell type and heterogeneous co-cultures require constructing spatially-defined arrays of multiple cell types. Such arrays are critical for investigating cellular properties as they exist in vivo. Current methods rely upon covalent surface modification or external physical micromanipulation to control cellular organization on a limited range of substrates. Here, we report a direct approach for creating co-cultures of different cell types by microcontact printing a photosensitive cell resist. The cell-resistant polymer converts to cell adhesive 0 with light exposure, thus the initial copolymer pattern dictates the position of both cell types. This strategy enables straightforward preparation of tailored heterotypic cell-cell contacts on materials ranging from polymers to metallic substrates.

8.
ACS Nano ; 4(4): 2070-6, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20356100

RESUMEN

Optical interferometry of a thin film array of titanium dioxide (TiO2) nanotubes allows the label-free sensing of rabbit immunoglobulin G (IgG). A protein A capture probe is used, which is immobilized on the inner pore walls of the nanotubes by electrostatic adsorption. Control experiments using IgG from chicken (which does not bind to protein A) confirms the specificity of the protein A-modified TiO2 nanotube array sensor. The aqueous stability of the TiO2 nanotube array was examined and compared with porous silica (SiO2), a more extensively studied thin film optical biosensor. The TiO2 nanotube array is stable in the pH range 2 to 12, whereas the porous SiO2 sensor displays significant degradation at pH > 8.


Asunto(s)
Técnicas Biosensibles/métodos , Interferometría/métodos , Nanotubos/química , Titanio/química , Adsorción , Animales , Inmunoglobulina G/análisis , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Luz , Microscopía Electrónica de Rastreo , Conejos , Espectroscopía Infrarroja por Transformada de Fourier , Proteína Estafilocócica A/análisis , Proteína Estafilocócica A/química , Proteína Estafilocócica A/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA