RESUMEN
PURPOSE: To develop and evaluate a highly efficient free-breathing and contrast-agent-free three-dimensional (3D) whole-heart Cardiac Magnetic Resonance Angiography (CMRA) sequence at 0.55T. METHODS: Free-breathing whole-heart CMRA has been previously proposed at 1.5 and 3T. Direct application of this sequence to 0.55T is not possible due to changes in the magnetic properties of the tissues. To enable free-breathing CMRA at 0.55T, pulse sequence design and acquisition parameters of a previously proposed whole-heart CMRA framework are optimized via Bloch simulations. Image navigators (iNAVs) are used to enable nonrigid respiratory motion-correction and 100% respiratory scan efficiency. Patch-based low-rank denoising is employed to accelerate the scan and account for the reduced signal-to-noise ratio at 0.55T. The proposed approach was evaluated on 11 healthy subjects. Image quality was assessed by a clinical expert (1: poor to 5: excellent) for all intrapericardiac structures. Quantitative evaluation was performed by assessing the vessel sharpness of the proximal right coronary artery (RCA). RESULTS: Optimization resulted in an imaging flip angle of 11 0 ∘ $$ 11{0}^{\circ } $$ , fat saturation flip angle of 18 0 ∘ $$ 18{0}^{\circ } $$ , and six k-space lines for iNAV encoding. The relevant cardiac structures and main coronary arteries were visible in all subjects, with excellent image quality (mean 4 . 9 / 5 . 0 $$ 4.9/5.0 $$ ) and minimal artifacts (mean 4 . 9 / 5 . 0 $$ 4.9/5.0 $$ ), with RCA vessel sharpness ( 50 . 3 % ± 9 . 8 % $$ 50.3\%\pm 9.8\% $$ ) comparable to previous studies at 1.5T. CONCLUSION: The proposed approach enables 3D whole-heart CMRA at 0.55T in a 6-min scan ( 5 . 9 ± 0 . 7 min $$ 5.9\pm 0.7\;\min $$ ), providing excellent image quality, minimal artifacts, and comparable vessel sharpness to previous 1.5T studies. Future work will include the evaluation of the proposed approach in patients with cardiovascular disease.
RESUMEN
PURPOSE: Simultaneous PET-MRI improves inflammatory cardiac disease diagnosis. However, challenges persist in respiratory motion and mis-registration between free-breathing 3D PET and 2D breath-held MR images. We propose a free-breathing non-rigid motion-compensated 3D T2 -mapping sequence enabling whole-heart myocardial tissue characterization in a hybrid 3T PET-MR system and provides non-rigid respiratory motion fields to correct also simultaneously acquired PET data. METHODS: Free-breathing 3D whole-heart T2 -mapping was implemented on a hybrid 3T PET-MRI system. Three datasets were acquired with different T2 -preparation modules (0, 28, 55 ms) using 3-fold undersampled variable-density Cartesian trajectory. Respiratory motion was estimated via virtual 3D image navigators, enabling multi-contrast non-rigid motion-corrected MR reconstruction. T2 -maps were computed using dictionary-matching. Approach was tested in phantom, 8 healthy subjects, 14 MR only and 2 PET-MR patients with suspected cardiac disease and compared with spin echo reference (phantom) and clinical 2D T2 -mapping (in-vivo). RESULTS: Phantom results show a high correlation (R2 = 0.996) between proposed approach and gold standard 2D T2 mapping. In-vivo 3D T2 -mapping average values in healthy subjects (39.0 ± 1.4 ms) and patients (healthy tissue) (39.1 ± 1.4 ms) agree with conventional 2D T2 -mapping (healthy = 38.6 ± 1.2 ms, patients = 40.3 ± 1.7 ms). Bland-Altman analysis reveals bias of 1.8 ms and 95% limits of agreement (LOA) of -2.4-6 ms for healthy subjects, and bias of 1.3 ms and 95% LOA of -1.9 to 4.6 ms for patients. CONCLUSION: Validated efficient 3D whole-heart T2 -mapping at hybrid 3T PET-MRI provides myocardial inflammation characterization and non-rigid respiratory motion fields for simultaneous PET data correction. Comparable T2 values were achieved with both 3D and 2D methods. Improved image quality was observed in the PET images after MR-based motion correction.
Asunto(s)
Miocarditis , Miocardio , Humanos , Imagen por Resonancia Magnética , Movimiento (Física) , Imagenología Tridimensional/métodos , Tomografía de Emisión de Positrones , Corazón/diagnóstico por imagen , Fantasmas de ImagenRESUMEN
BACKGROUND: Three dimensional, whole-heart (3DWH) MRI is an established non-invasive imaging modality in patients with congenital heart disease (CHD) for the diagnosis of cardiovascular morphology and for clinical decision making. Current techniques utilise diaphragmatic navigation (dNAV) for respiratory motion correction and gating and are frequently limited by long acquisition times. This study proposes and evaluates the diagnostic performance of a respiratory gating-free framework, which considers respiratory image-based navigation (iNAV), and highly accelerated variable density Cartesian sampling in concert with non-rigid motion correction and low-rank patch-based denoising (iNAV-3DWH-PROST). The method is compared to the clinical dNAV-3DWH sequence in adult patients with CHD. METHODS: In this prospective single center study, adult patients with CHD who underwent the clinical dNAV-3DWH MRI were also scanned with the iNAV-3DWH-PROST. Diagnostic confidence (4-point Likert scale) and diagnostic accuracy for common cardiovascular lesions was assessed by three readers. Scan times and diagnostic confidence were compared using the Wilcoxon-signed rank test. Co-axial vascular dimensions at three anatomic landmarks were measured, and agreement between the research and the corresponding clinical sequence was assessed with Bland-Altman analysis. RESULTS: The study included 60 participants (mean age ± [SD]: 33 ± 14 years; 36 men). The mean acquisition time of iNAV-3DWH-PROST was significantly lower compared with the conventional clinical sequence (3.1 ± 0.9 min vs 13.9 ± 3.9 min, p < 0.0001). Diagnostic confidence was higher for the iNAV-3DWH-PROST sequence compared with the clinical sequence (3.9 ± 0.2 vs 3.4 ± 0.8, p < 0.001), however there was no significant difference in diagnostic accuracy. Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and the clinical vascular measurements. CONCLUSIONS: The iNAV-3DWH-PROST framework provides efficient, high quality and robust 3D whole-heart imaging in significantly shorter scan time compared to the standard clinical sequence.
Asunto(s)
Cardiopatías Congénitas , Imagenología Tridimensional , Valor Predictivo de las Pruebas , Humanos , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Masculino , Adulto , Estudios Prospectivos , Femenino , Reproducibilidad de los Resultados , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , RespiraciónRESUMEN
BACKGROUND: The diagnosis of myocarditis by CMR requires the use of T2 and T1 weighted imaging, ideally incorporating parametric mapping. Current 2D mapping sequences are acquired sequentially and involve multiple breath-holds resulting in prolonged scan times and anisotropic image resolution. We developed an isotropic free-breathing 3D whole-heart sequence which allows simultaneous T1 and T2 mapping and validated it in patients with suspected acute myocarditis. METHODS: Eighteen healthy volunteers and 28 patients with suspected myocarditis underwent conventional 2D T1 and T2 mapping with whole heart coverage and 3D joint T1/T2 mapping on a 1.5T scanner. Acquisition time, image quality, and diagnostic performance were compared. Qualitative analysis was performed using a 4-point Likert scale. Bland-Altman plots were used to assess the quantitative agreement between 2D and 3D sequences. RESULTS: The 3D T1/T2 sequence was acquired in 8mins 26s under free breathing, whereas 2D T1 and T2 sequences were acquired with breath holds in 11mins 44s (p=0.0001). All 2D images were diagnostic. For 3D images, 89% of T1 and 96% of T2 images were diagnostic with no significant difference in the proportion of diagnostic images for the 3D and 2D T1 (p=0.2482) and T2 maps (p=1.0000). Systematic bias in T1 was noted with biases of 102ms, 115ms, and 152ms for basal-apical segments, with a larger bias for higher T1 values. Good agreement between T2 values for 3D and 2D techniques was found (bias of 1.8ms, 3.9ms, and 3.6ms for basal-apical segments). The sensitivity and specificity of the 3D sequence for diagnosing acute myocarditis was 74% (95% confidence interval [CI] 49-91%) and 83% (36-100%) respectively, with an estimated c-statistic (95% CI) of 0.85 (0.79-0.91) and no statistically significant difference between the 2D and 3D sequences for the detection of acute myocarditis for T1 (p=0.2207) or T2 (p=1.0000). CONCLUSION: Free-breathing whole heart 3D joint T1/T2 mapping was comparable to 2D mapping sequences with respect to diagnostic performance, but with the added advantages of free-breathing, and shorter scan times. Further work is required to address the bias noted at high T1 values, but this did not significantly impact on diagnostic accuracy.
RESUMEN
BACKGROUND: Longitudinal cohort data of patients with tuberculosis (TB) and coronavirus disease 2019 (COVID-19) are lacking. In our global study, we describe long-term outcomes of patients affected by TB and COVID-19. METHODS: We collected data from 174 centres in 31 countries on all patients affected by COVID-19 and TB between 1 March 2020 and 30 September 2022. Patients were followed-up until cure, death or end of cohort time. All patients had TB and COVID-19; for analysis purposes, deaths were attributed to TB, COVID-19 or both. Survival analysis was performed using Cox proportional risk-regression models, and the log-rank test was used to compare survival and mortality attributed to TB, COVID-19 or both. RESULTS: Overall, 788 patients with COVID-19 and TB (active or sequelae) were recruited from 31 countries, and 10.8% (n=85) died during the observation period. Survival was significantly lower among patients whose death was attributed to TB and COVID-19 versus those dying because of either TB or COVID-19 alone (p<0.001). Significant adjusted risk factors for TB mortality were higher age (hazard ratio (HR) 1.05, 95% CI 1.03-1.07), HIV infection (HR 2.29, 95% CI 1.02-5.16) and invasive ventilation (HR 4.28, 95% CI 2.34-7.83). For COVID-19 mortality, the adjusted risks were higher age (HR 1.03, 95% CI 1.02-1.04), male sex (HR 2.21, 95% CI 1.24-3.91), oxygen requirement (HR 7.93, 95% CI 3.44-18.26) and invasive ventilation (HR 2.19, 95% CI 1.36-3.53). CONCLUSIONS: In our global cohort, death was the outcome in >10% of patients with TB and COVID-19. A range of demographic and clinical predictors are associated with adverse outcomes.
Asunto(s)
COVID-19 , Coinfección , Infecciones por VIH , Tuberculosis Miliar , Humanos , Masculino , COVID-19/complicaciones , Infecciones por VIH/complicaciones , Factores de Riesgo , Estudios RetrospectivosRESUMEN
PURPOSE: Develop a novel approach for accelerated 2D free-breathing myocardial perfusion via low-rank motion-corrected (LRMC) reconstructions. METHODS: Myocardial perfusion imaging requires high spatial and temporal resolution, despite scan time constraints. Here, we incorporate LRMC models into the reconstruction-encoding operator, together with high-dimensionality patch-based regularization, to produce high quality, motion-corrected myocardial perfusion series from free-breathing acquisitions. The proposed framework estimates beat-to-beat nonrigid respiratory (and any other incidental) motion and the dynamic contrast subspace from the actual acquired data, which are then incorporated into the proposed LRMC reconstruction. LRMC was compared with iterative SENSitivity Encoding (SENSE) (itSENSE) and low-rank plus sparse (LpS) reconstruction in 10 patients based on image-quality scoring and ranking by two clinical expert readers. RESULTS: LRMC achieved significantly improved results relative to itSENSE and LpS in terms of image sharpness, temporal coefficient of variation, and expert reader evaluation. Left ventricle image sharpness was approximately 75%, 79%, and 86% for itSENSE, LpS and LRMC, respectively, indicating improved image sharpness for the proposed approach. Corresponding temporal coefficient of variation results were 23%, 11% and 7%, demonstrating improved temporal fidelity of the perfusion signal with the proposed LRMC. Corresponding clinical expert reader scores (1-5, from poor to excellent image quality) were 3.3, 3.9 and 4.9, demonstrating improved image quality with the proposed LRMC, in agreement with the automated metrics. CONCLUSION: LRMC produces motion-corrected myocardial perfusion in free-breathing acquisitions with substantially improved image quality when compared with iterative SENSE and LpS reconstructions.
Asunto(s)
Imagen de Perfusión Miocárdica , Humanos , Imagen de Perfusión Miocárdica/métodos , Lipopolisacáridos , Respiración , Movimiento (Física) , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodosRESUMEN
Magnetic resonance imaging (MRI) is a versatile modality that can generate high-resolution images with a variety of tissue contrasts. However, MRI is a slow technique and requires long acquisition times, which increase with higher temporal and spatial resolution and/or when multiple contrasts and large volumetric coverage is required. In order to speedup MR data acquisition, several approaches have been introduced in the literature. Most of these techniques acquire less data than required and exploit intrinsic redundancies in the MR images to recover the information that was not sampled. This article presents a review of MR acquisition and reconstruction methods that have exploited redundancies in the temporal, spatial, and contrast/parametric dimensions to accelerate image data acquisition, focusing on cardiac and abdominal MR imaging applications. The review describes how each of these dimensions has been separately exploited for speeding up MR acquisition to then discuss more advanced techniques where multiple dimensions are exploited together for further reducing scan times. Finally, future directions for multidimensional image acceleration and remaining technical challenges are discussed. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: 1.
Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Corazón/diagnóstico por imagen , Aceleración , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
BACKGROUND: Bright-blood lumen and black-blood vessel wall imaging are required for the comprehensive assessment of aortic disease. These images are usually acquired separately, resulting in long examinations and potential misregistration between images. PURPOSE: To characterize the performance of an accelerated and respiratory motion-compensated three-dimensional (3D) cardiac MRI technique for simultaneous contrast-free aortic lumen and vessel wall imaging with an interleaved T2 and inversion recovery prepared sequence (iT2Prep-BOOST). STUDY TYPE: Prospective. POPULATION: A total of 30 consecutive patients with aortopathy referred for a clinically indicated cardiac MRI examination (9 females, mean age ± standard deviation: 32 ± 12 years). FIELD STRENGTH/SEQUENCE: 1.5-T; bright-blood MR angiography (diaphragmatic navigator-gated T2-prepared 3D balanced steady-state free precession [bSSFP], T2Prep-bSSFP), breath-held black-blood two-dimensional (2D) half acquisition single-shot turbo spin echo (HASTE), and 3D bSSFP iT2Prep-BOOST. ASSESSMENT: iT2Prep-BOOST bright-blood images were compared to T2prep-bSSFP images in terms of aortic vessel dimensions, lumen-to-myocardium contrast ratio (CR), and image quality (diagnostic confidence, vessel sharpness and presence of artifacts, assessed by three cardiologists on a 4-point scale, 1: nondiagnostic to 4: excellent). The iT2Prep-BOOST black-blood images were compared to 2D HASTE images for quantification of wall thickness. A visual comparison between computed tomography (CT) and iT2Prep-BOOST was performed in a patient with chronic aortic dissection. STATISTICAL TESTS: Paired t-tests, Wilcoxon signed-rank tests, intraclass correlation coefficient (ICC), Bland-Altman analysis. A P value < 0.05 was considered statistically significant. RESULTS: Bright-blood iT2Prep-BOOST resulted in significantly improved image quality (mean ± standard deviation 3.8 ± 0.5 vs. 3.3 ± 0.8) and CR (2.9 ± 0.8 vs. 1.8 ± 0.5) compared with T2Prep-bSSFP, with a shorter scan time (7.8 ± 1.7 minutes vs. 12.9 ± 3.4 minutes) while providing a complementary 3D black-blood image. Aortic lumen diameter and vessel wall thickness measurements in bright-blood and black-blood images were in good agreement with T2Prep-bSSFP and HASTE images (<0.02 cm and <0.005 cm bias, respectively) and good intrareader (ICC > 0.96) and interreader (ICC > 0.94) agreement was observed for all measurements. DATA CONCLUSION: iT2Prep-BOOST might enable time-efficient simultaneous bright- and black-blood aortic imaging, with improved image quality compared to T2Prep-bSSFP and HASTE imaging, and comparable measurements for aortic wall and lumen dimensions. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.
Asunto(s)
Enfermedades de la Aorta , Angiografía por Resonancia Magnética , Femenino , Humanos , Angiografía por Resonancia Magnética/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Enfermedades de la Aorta/diagnóstico por imagen , Miocardio , Imagenología Tridimensional/métodos , Reproducibilidad de los ResultadosRESUMEN
OBJECTIVES: To investigate the efficacy of an in-line non-rigid motion-compensated reconstruction (NRC) in an image-navigated high-resolution three-dimensional late gadolinium enhancement (LGE) sequence with Dixon water-fat separation, in a clinical setting. METHODS: Forty-seven consecutive patients were enrolled prospectively and examined with 1.5 T MRI. NRC reconstructions were compared to translational motion-compensated reconstructions (TC) of the same datasets in overall and different sub-category image quality scores, diagnostic confidence, contrast ratios, LGE pattern, and semiautomatic LGE quantification. RESULTS: NRC outperformed TC in all image quality scores (p < 0.001 to 0.016; e.g., overall image quality 5/5 points vs. 4/5). Overall image quality was downgraded in only 23% of NRC datasets vs. 53% of TC datasets due to residual respiratory motion. In both reconstructions, LGE was rated as ischemic in 11 patients and non-ischemic in 10 patients, while it was absent in 26 patients. NRC delivered significantly higher LGE-to-myocardium and blood-to-myocardium contrast ratios (median 6.33 vs. 5.96, p < 0.001 and 4.88 vs. 4.66, p < 0.001, respectively). Automatically detected LGE mass was significantly lower in the NRC reconstruction (p < 0.001). Diagnostic confidence was identical in all cases, with high confidence in 89% and probable in 11% datasets for both reconstructions. No case was rated as inconclusive. CONCLUSIONS: The in-line implementation of a non-rigid motion-compensated reconstruction framework improved image quality in image-navigated free-breathing, isotropic high-resolution 3D LGE imaging with undersampled spiral-like Cartesian sampling and Dixon water-fat separation compared to translational motion correction of the same datasets. The sharper depictions of LGE may lead to more accurate measures of LGE mass. KEY POINTS: ⢠3D LGE imaging provides high-resolution detection of myocardial scarring. ⢠Non-rigid motion correction provides better image quality in cardiac MRI. ⢠Non-rigid motion correction may lead to more accurate measures of LGE mass.
Asunto(s)
Medios de Contraste , Gadolinio , Medios de Contraste/farmacología , Humanos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , AguaRESUMEN
BACKGROUND: The application of cardiovascular magnetic resonance angiography (CMRA) for the assessment of thoracic aortic disease is often associated with prolonged and unpredictable acquisition times and residual motion artefacts. To overcome these limitations, we have integrated undersampled acquisition with image-based navigators and inline non-rigid motion correction to enable a free-breathing, contrast-free Cartesian CMRA framework for the visualization of the thoracic aorta in a short and predictable scan of 3 min. METHODS: 35 patients with thoracic aortic disease (36 ± 13y, 14 female) were prospectively enrolled in this single-center study. The proposed 3D T2-prepared balanced steady state free precession (bSSFP) sequence with image-based navigator (iNAV) was compared to the clinical 3D T2-prepared bSSFP with diaphragmatic-navigator gating (dNAV), in terms of image acquisition time. Three cardiologists blinded to iNAV vs. dNAV acquisition, recorded image quality scores across four aortic segments and their overall diagnostic confidence. Contrast ratio (CR) and relative standard deviation (RSD) of signal intensity (SI) in the corresponding segments were estimated. Co-axial aortic dimensions in six landmarks were measured by two readers to evaluate the agreement between the two methods, along with inter-observer and intra-observer agreement. Kolmogorov-Smirnov test, Mann-Whitney U (MWU), Bland-Altman analysis (BAA), intraclass correlation coefficient (ICC) were used for statistical analysis. RESULTS: The scan time for the iNAV-based approach was significantly shorter (3.1 ± 0.5 min vs. 12.0 ± 3.0 min for dNAV, P = 0.005). Reconstruction was performed inline in 3.0 ± 0.3 min. Diagnostic confidence was similar for the proposed iNAV versus dNAV for all three reviewers (Reviewer 1: 3.9 ± 0.3 vs. 3.8 ± 0.4, P = 0.7; Reviewer 2: 4.0 ± 0.2 vs. 3.9 ± 0.3, P = 0.4; Reviewer 3: 3.8 ± 0.4 vs. 3.7 ± 0.6, P = 0.3). The proposed method yielded higher image quality scores in terms of artefacts from respiratory motion, and non-diagnostic images due to signal inhomogeneity were observed less frequently. While the dNAV approach outperformed the iNAV method in the CR assessment, the iNAV sequence showed improved signal homogeneity along the entire thoracic aorta [RSD SI 5.1 (4.4, 6.5) vs. 6.5 (4.6, 8.6), P = 0.002]. BAA showed a mean difference of < 0.05 cm across the 6 landmarks between the two datasets. ICC showed excellent inter- and intra-observer reproducibility. CONCLUSIONS: Thoracic aortic iNAV-based CMRA with fast acquisition (~ 3 min) and inline reconstruction (3 min) is proposed, resulting in high diagnostic confidence and reproducible aortic measurements.
Asunto(s)
Aorta Torácica , Angiografía por Resonancia Magnética , Aorta Torácica/diagnóstico por imagen , Femenino , Corazón , Humanos , Imagenología Tridimensional , Valor Predictivo de las Pruebas , Reproducibilidad de los ResultadosRESUMEN
PURPOSE: To develop and evaluate a novel and generalizable super-resolution (SR) deep-learning framework for motion-compensated isotropic 3D coronary MR angiography (CMRA), which allows free-breathing acquisitions in less than a minute. METHODS: Undersampled motion-corrected reconstructions have enabled free-breathing isotropic 3D CMRA in ~5-10 min acquisition times. In this work, we propose a deep-learning-based SR framework, combined with non-rigid respiratory motion compensation, to shorten the acquisition time to less than 1 min. A generative adversarial network (GAN) is proposed consisting of two cascaded Enhanced Deep Residual Network generator, a trainable discriminator, and a perceptual loss network. A 16-fold increase in spatial resolution is achieved by reconstructing a high-resolution (HR) isotropic CMRA (0.9 mm3 or 1.2 mm3 ) from a low-resolution (LR) anisotropic CMRA (0.9 × 3.6 × 3.6 mm3 or 1.2 × 4.8 × 4.8 mm3 ). The impact and generalization of the proposed SRGAN approach to different input resolutions and operation on image and patch-level is investigated. SRGAN was evaluated on a retrospective downsampled cohort of 50 patients and on 16 prospective patients that were scanned with LR-CMRA in ~50 s under free-breathing. Vessel sharpness and length of the coronary arteries from the SR-CMRA is compared against the HR-CMRA. RESULTS: SR-CMRA showed statistically significant (P < .001) improved vessel sharpness 34.1% ± 12.3% and length 41.5% ± 8.1% compared with LR-CMRA. Good generalization to input resolution and image/patch-level processing was found. SR-CMRA enabled recovery of coronary stenosis similar to HR-CMRA with comparable qualitative performance. CONCLUSION: The proposed SR-CMRA provides a 16-fold increase in spatial resolution with comparable image quality to HR-CMRA while reducing the predictable scan time to <1 min.
Asunto(s)
Aprendizaje Profundo , Angiografía Coronaria , Vasos Coronarios/diagnóstico por imagen , Corazón , Humanos , Imagenología Tridimensional , Angiografía por Resonancia Magnética , Estudios Prospectivos , Estudios RetrospectivosRESUMEN
OBJECTIVES: To evaluate an image-navigated isotropic high-resolution 3D late gadolinium enhancement (LGE) prototype sequence with compressed sensing and Dixon water-fat separation in a clinical routine setting. MATERIAL AND METHODS: Forty consecutive patients scheduled for cardiac MRI were enrolled prospectively and examined with 1.5 T MRI. Overall subjective image quality, LGE pattern and extent, diagnostic confidence for detection of LGE, and scan time were evaluated and compared to standard 2D LGE imaging. Robustness of Dixon fat suppression was evaluated for 3D Dixon LGE imaging. For statistical analysis, the non-parametric Wilcoxon rank sum test was performed. RESULTS: LGE was rated as ischemic in 9 patients and non-ischemic in 11 patients while it was absent in 20 patients. Image quality and diagnostic confidence were comparable between both techniques (p = 0.67 and p = 0.66, respectively). LGE extent with respect to segmental or transmural myocardial enhancement was identical between 2D and 3D (water-only and in-phase). LGE size was comparable (3D 8.4 ± 7.2 g, 2D 8.7 ± 7.3 g, p = 0.19). Good or excellent fat suppression was achieved in 93% of the 3D LGE datasets. In 6 patients with pericarditis, the 3D sequence with Dixon fat suppression allowed for a better detection of pericardial LGE. Scan duration was significantly longer for 3D imaging (2D median 9:32 min vs. 3D median 10:46 min, p = 0.001). CONCLUSION: The 3D LGE sequence provides comparable LGE detection compared to 2D imaging and seems to be superior in evaluating the extent of pericardial involvement in patients suspected with pericarditis due to the robust Dixon fat suppression. KEY POINTS: ⢠Three-dimensional LGE imaging provides high-resolution detection of myocardial scarring. ⢠Robust Dixon water-fat separation aids in the assessment of pericardial disease. ⢠The 2D image navigator technique enables 100% respiratory scan efficacy and permits predictable scan times.
Asunto(s)
Gadolinio , Imagenología Tridimensional , Medios de Contraste , Humanos , Aumento de la Imagen , Imagen por Resonancia Magnética , AguaRESUMEN
PURPOSE: To develop a free-breathing whole-heart isotropic-resolution 3D late gadolinium enhancement (LGE) sequence with Dixon-encoding, which provides co-registered 3D grey-blood phase-sensitive inversion-recovery (PSIR) and complementary 3D fat volumes in a single scan of < 7 min. METHODS: A free-breathing 3D PSIR LGE sequence with dual-echo Dixon readout with a variable density Cartesian trajectory with acceleration factor of 3 is proposed. Image navigators are acquired to correct both inversion recovery (IR)-prepared and reference volumes for 2D translational respiratory motion, enabling motion compensated PSIR reconstruction with 100% respiratory scan efficiency. An intermediate PSIR reconstruction is performed between the in-phase echoes to estimate the signal polarity which is subsequently applied to the IR-prepared water volume to generate a water grey-blood PSIR image. The IR-prepared water volume is obtained using a water/fat separation algorithm from the corresponding dual-echo readout. The complementary fat-volume is obtained after water/fat separation of the reference volume. Ten patients (6 with myocardial scar) were scanned with the proposed water/fat grey-blood 3D PSIR LGE sequence at 1.5 T and compared to breath-held grey-blood 2D LGE sequence in terms of contrast ratio (CR), contrast-to-noise ratio (CNR), scar depiction, scar transmurality, scar mass and image quality. RESULTS: Comparable CRs (p = 0.98, 0.40 and 0.83) and CNRs (p = 0.29, 0.40 and 0.26) for blood-myocardium, scar-myocardium and scar-blood respectively were obtained with the proposed free-breathing 3D water/fat LGE and 2D clinical LGE scan. Excellent agreement for scar detection, scar transmurality, scar mass (bias = 0.29%) and image quality scores (from 1: non-diagnostic to 4: excellent) of 3.8 ± 0.42 and 3.6 ± 0.69 (p > 0.99) were obtained with the 2D and 3D PSIR LGE approaches with comparable total acquisition time (p = 0.29). Similar agreement in intra and inter-observer variability were obtained for the 2D and 3D acquisition respectively. CONCLUSION: The proposed approach enabled the acquisition of free-breathing motion-compensated isotropic-resolution 3D grey-blood PSIR LGE and fat volumes. The proposed approach showed good agreement with conventional 2D LGE in terms of CR, scar depiction and scan time, while enabling free-breathing acquisition, whole-heart coverage, reformatting in arbitrary views and visualization of both water and fat information.
Asunto(s)
Medios de Contraste , Gadolinio , Humanos , Aumento de la Imagen , Imagenología Tridimensional , Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: The widespread clinical application of coronary cardiovascular magnetic resonance (CMR) angiography (CMRA) for the assessment of coronary artery disease (CAD) remains limited due to low scan efficiency leading to prolonged and unpredictable acquisition times; low spatial-resolution; and residual respiratory motion artefacts resulting in limited image quality. To overcome these limitations, we have integrated highly undersampled acquisitions with image-based navigators and non-rigid motion correction to enable high resolution (sub-1 mm3) free-breathing, contrast-free 3D whole-heart coronary CMRA with 100% respiratory scan efficiency in a clinically feasible and predictable acquisition time. OBJECTIVES: To evaluate the diagnostic performance of this coronary CMRA framework against coronary computed tomography angiography (CTA) in patients with suspected CAD. METHODS: Consecutive patients (n = 50) with suspected CAD were examined on a 1.5T CMR scanner. We compared the diagnostic accuracy of coronary CMRA against coronary CTA for detecting a ≥ 50% reduction in luminal diameter. RESULTS: The 50 recruited patients (55 ± 9 years, 33 male) completed coronary CMRA in 10.7 ± 1.4 min. Twelve (24%) had significant CAD on coronary CTA. Coronary CMRA obtained diagnostic image quality in 95% of all, 97% of proximal, 97% of middle and 90% of distal coronary segments. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were: per patient (100%, 74%, 55%, 100% and 80%), per vessel (81%, 88%, 46%, 97% and 88%) and per segment (76%, 95%, 44%, 99% and 94%) respectively. CONCLUSIONS: The high diagnostic image quality and diagnostic performance of coronary CMRA compared against coronary CTA demonstrates the potential of coronary CMRA as a robust and safe non-invasive alternative for excluding significant disease in patients at low-intermediate risk of CAD.
Asunto(s)
Angiografía por Tomografía Computarizada , Enfermedad de la Arteria Coronaria , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Femenino , Humanos , Angiografía por Resonancia Magnética , Masculino , Persona de Mediana Edad , Valor Predictivo de las PruebasRESUMEN
OBJECTIVE: 3D late gadolinium enhancement (LGE) imaging is a promising non-invasive technique for the assessment of atrial fibrosis. However, current techniques result in prolonged and unpredictable scan times and high rates of non-diagnostic images. The purpose of this study was to compare the performance of a recently proposed accelerated respiratory motion-compensated 3D water/fat LGE technique with conventional 3D LGE for atrial wall imaging. MATERIALS AND METHODS: 18 patients (age: 55.7±17.1 years) with atrial fibrillation underwent conventional diaphragmatic navigator gated inversion recovery (IR)-prepared 3D LGE (dNAV) and proposed image-navigator motion-corrected water/fat IR-prepared 3D LGE (iNAV) imaging. Images were assessed for image quality and presence of fibrosis by three expert observers. The scan time for both techniques was recorded. RESULTS: Image quality scores were improved with the proposed compared to the conventional method (iNAV: 3.1 ± 1.0 vs. dNAV: 2.6 ± 1.0, p = 0.0012, with 1: Non-diagnostic to 4: Full diagnostic). Furthermore, scan time for the proposed method was significantly shorter with a 59% reduction is scan time (4.5 ± 1.2 min vs. 10.9 ± 3.9 min, p < 0.0001). The images acquired with the proposed method were deemed as inconclusive less frequently than the conventional images (expert 1/expert 2: 4/7 dNAV and 2/4 iNAV images inconclusive). DISCUSSION: The motion-compensated water/fat LGE method enables atrial wall imaging with diagnostic quality comparable to the current conventional approach with a significantly shorter scan of about 5 min.
Asunto(s)
Medios de Contraste , Gadolinio , Adulto , Anciano , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Persona de Mediana Edad , AguaRESUMEN
BACKGROUND: Conventional 2D inversion recovery (IR) and phase sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) have been widely incorporated into routine CMR for the assessment of myocardial viability. However, reliable suppression of fat signal, and increased isotropic spatial resolution and volumetric coverage within a clinically feasible scan time remain a challenge. In order to address these challenges, this work proposes a highly efficient respiratory motion-corrected 3D whole-heart water/fat LGE imaging framework. METHODS: An accelerated IR-prepared 3D dual-echo acquisition and motion-corrected reconstruction framework for whole-heart water/fat LGE imaging was developed. The acquisition sequence includes 2D image navigators (iNAV), which are used to track the respiratory motion of the heart and enable 100% scan efficiency. Non-rigid motion information estimated from the 2D iNAVs and from the data itself is integrated into a high-dimensional patch-based undersampled reconstruction technique (HD-PROST), to produce high-resolution water/fat 3D LGE images. A cohort of 20 patients with known or suspected cardiovascular disease was scanned with the proposed 3D water/fat LGE approach. 3D water LGE images were compared to conventional breath-held 2D LGE images (2-chamber, 4-chamber and stack of short-axis views) in terms of image quality (1: full diagnostic to 4: non-diagnostic) and presence of LGE findings. RESULTS: Image quality was considered diagnostic in 18/20 datasets for both 2D and 3D LGE magnitude images, with comparable image quality scores (2D: 2.05 ± 0.72, 3D: 1.88 ± 0.90, p-value = 0.62) and overall agreement in LGE findings. Acquisition time for isotropic high-resolution (1.3mm3) water/fat LGE images was 8.0 ± 1.4 min (3-fold acceleration, 60-88 slices covering the whole heart), while 2D LGE images were acquired in 5.6 ± 2.2 min (12-18 slices, including pauses between breath-holds) albeit with a lower spatial resolution (1.40-1.75 mm in-plane × 8 mm slice thickness). CONCLUSION: A novel framework for motion-corrected whole-heart 3D water/fat LGE imaging has been introduced. The method was validated in patients with known or suspected cardiovascular disease, showing good agreement with conventional breath-held 2D LGE imaging, but offering higher spatial resolution, improved volumetric coverage and good image quality from a free-breathing acquisition with 100% scan efficiency and predictable scan time.
Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Adiposidad , Agua Corporal/química , Enfermedades Cardiovasculares/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Corazón/diagnóstico por imagen , Imagenología Tridimensional , Imagen por Resonancia Magnética , Compuestos Organometálicos/administración & dosificación , Tejido Adiposo/fisiopatología , Adulto , Anciano , Contencion de la Respiración , Técnicas de Imagen Sincronizada Cardíacas , Enfermedades Cardiovasculares/fisiopatología , Electrocardiografía , Femenino , Corazón/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los ResultadosRESUMEN
Syphilis during pregnancy has a high risk of congenital transmission with disastrous fetal consequences. Penicillin (PNC) is the only effective antimicrobial for the treatment of pregnant women with syphilis. Chilean guidelines do not consider desensitization to PNC in these women. We report two cases of pregnant women aged 32 and 23 years, with immediate allergy to PNC and syphilis who were safely and successfully desensitized using a four-hour intravenous protocol in the critical care unit and who subsequently received benzathine G PNC. An electronic survey was conducted among approximately 100 Clinical Pharmacists (CP) in the country. Of these, 16 answered and 13 reported having experience in drug desensitization, in at least five cases with PNC and none reported deaths or cardiorespiratory arrest. Desensitization to PNC can be carried out safely and in Chile, this alternative should be incorporated to the management of pregnant women with syphilis and immediate allergy to PNC, instead of using erythromycin.
Asunto(s)
Hipersensibilidad , Complicaciones Infecciosas del Embarazo , Sífilis , Adulto , Chile , Femenino , Humanos , Hipersensibilidad/complicaciones , Penicilina G Benzatina , Embarazo , Sífilis/complicaciones , Adulto JovenRESUMEN
Cancer is one of the leading causes of death worldwide. The success rate of conventional anticancer therapeutic approaches such as chemotherapy is limited by the non-specific toxicity and low specificity towards specific tumors, which are highly dependent on the mutational burden present on each patient. Similarly, targeted therapies have proven to induce resistance in numerous malignancies. Therefore, immunotherapy has emerged as a better approach to discriminate between "the own" and "the non-own", which occurs through two types of mechanisms, innate and acquired immunity. Acquired immunity is one of the targets for new immunotherapeutic treatments, unleashing the power of antigen-specific T cells as a potential therapeutic weapon for cancer treatment. Thus, immunotherapy modifies the own immune system to increase the recognition and elimination of cancer cells by identifying these cancer antigens. One of the advantages of immunotherapy, when compared to conventional anticancer approaches, is the generation of long-term immunity (immunological memory). Currently, there are different potential types of immunotherapy in cancer to promote the modulation of the immune response. Among them, the use of cytokines, vaccines, viruses, monoclonal antibodies, and the generation of adaptive immune response cells have achieved successful results in some types of cancer.
Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Neoplasias/terapiaRESUMEN
PURPOSE: To develop a framework for respiratory motion-corrected 3D whole-heart water/fat coronary MR angiography (CMRA) at 3T with reduced and predictable scan time. METHODS: A 3D dual-echo acquisition and respiratory motion-corrected reconstruction framework for water/fat CMRA imaging was developed. The acquisition sequence integrates a 2D dual-echo image navigator (iNAV), enabling 100% respiratory scan efficiency. Respiratory motion estimated from both the 2D iNAVs and the 3D data itself is used to produce nonrigid motion-corrected water/fat CMRA images. A first study to investigate which iNAV (water, fat, in-phase or out-of-phase) provides the best translational motion estimation was performed in 10 healthy subjects. Subsequently, nonrigid motion-corrected water/fat images were compared to a diaphragmatic navigator gated and tracked water/fat CMRA acquisition. Image quality metrics included visible vessel length and vessel sharpness for both the left anterior descending and right coronary arteries. RESULTS: Average vessel sharpness achieved with water, fat, in-phase and out-of-phase iNAVs was 33.8%, 29.6%, 32.2%, and 38.5%, respectively. Out-of-phase iNAVs were therefore used for estimating translational respiratory motion for the remainder of the study. No statistically significant differences in vessel length and sharpness (P > 0.01) were observed between the proposed nonrigid motion correction approach and the reference images, although data acquisition was significantly shorter (P < 2.6×10-4 ). Motion correction improved vessel sharpness by 60.4% and vessel length by 47.7%, on average, in water CMRA images in comparison with no motion correction. CONCLUSION: The feasibility of a novel motion-corrected water/fat CMRA approach has been demonstrated at 3T, producing images comparable to a reference gated acquisition, but in a shorter and predictable scan time.
Asunto(s)
Angiografía Coronaria/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Tejido Adiposo/fisiología , Adulto , Algoritmos , Vasos Coronarios/diagnóstico por imagen , Femenino , Corazón/diagnóstico por imagen , Humanos , Masculino , Movimiento/fisiología , RespiraciónRESUMEN
PURPOSE: To develop a framework for efficient and simultaneous acquisition of motion-compensated whole-heart coronary MR angiography (CMRA) and left ventricular function by MR and myocardial integrity by PET on a 3T PET-MR system. METHODS: An acquisition scheme based on a dual-phase CMRA sequence acquired simultaneously with cardiac PET data has been developed. The framework is integrated with a motion-corrected image reconstruction approach, so that non-rigid respiratory and cardiac deformation fields estimated from MR images are used to correct both the CMRA (respiratory motion correction for each cardiac phase) and the PET data (respiratory and cardiac motion correction). The proposed approach was tested in a cohort of 8 healthy subjects and 6 patients with coronary artery disease. Left ventricular (LV) function estimated from motion-corrected dual-phase CMRA was compared to the gold standard estimated from a stack of 2D CINE images for the healthy subjects. Relative increase of signal in motion-corrected PET images compared to uncorrected images was computed for standard 17-segment polar maps for each patient. RESULTS: Motion-corrected dual-phase CMRA images allow for visualization of the coronary arteries in both systole and diastole for all healthy subjects and cardiac patients. LV functional indices from healthy subjects result in good agreement with the reference method, underestimating stroke volume by 3.07 ± 3.26 mL and ejection fraction by 0.30 ± 1.01%. Motion correction improved delineation of the myocardium in PET images, resulting in an increased 18 F-FDG signal of up to 28% in basal segments of the myocardial wall compared to uncorrected images. CONCLUSION: The proposed motion-corrected dual-phase CMRA and cardiac PET produces co-registered good quality images in both modalities in a single efficient examination of ~13 min.