Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083092

RESUMEN

Idiopathic Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. It affects the nervous system, causing motor and non-motor symptomatology. However, its clinical diagnosis remains dependent on the expertise of clinicians, as perceptual clinical scales are often used. Gait stability is one of the most relevant motor signs in PD. Nonetheless, it is usually not reported or quantified, possibly due to its unclear meaning and the high variability of metrics used in the literature. This work aims to identify a reliable and objective indicator that clinicians can use to assess patients in realistic contexts. We focused on the Largest Lyapunov Exponent (LLE), being the most common metric used in previous research works to quantify gait stability. The short and long-term LLEs were calculated in a group of 34 healthy and 42 participants diagnosed with PD. The long-term LLE extracted from the chest, right arm and right foot sensors showed statistical differences between subjects with PD and healthy control (HC) subjects, showing that the HC subjects are more stable than PD patients, whereas the short-term LLE showed the opposite results. Further investigation is required to clarify the reliability of this metric to detect and rate gait stability in people affected with PD.Clinical Relevance- This study is the first step towards the identification of an objective methodology to assess gait stability in clinical settings. Achieving this goal will contribute to improve the understanding and support the diagnosis of gait disorders that cause gait stability problems.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Reproducibilidad de los Resultados , Marcha/fisiología , Pie , Brazo
2.
IEEE J Biomed Health Inform ; 22(6): 1765-1774, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30106745

RESUMEN

Inertial measurement units (IMUs) have a long-lasting popularity in a variety of industrial applications from navigation systems to guidance and robotics. Their use in clinical practice is now becoming more common, thanks to miniaturization and the ability to integrate on-board computational and decision-support features. IMU-based gait analysis is a paradigm of this evolving process, and in this study its use for the assessment of Parkinson's disease (PD) is comprehensively analyzed. Data coming from 25 individuals with different levels of PD symptoms severity and an equal number of age-matched healthy individuals were included into a set of 6 different machine learning (ML) techniques, processing 18 different configurations of gait parameters taken from 8 IMU sensors. Classification accuracy was calculated for each configuration and ML technique, adding two meta-classifiers based on the results obtained from all individual techniques through majority of voting, with two different weighting schemes. Average classification accuracy ranged between 63% and 80% among classifiers and increased up to 96% for one meta-classifier configuration. Configurations based on a statistical preselection process showed the highest average classification accuracy. When reducing the number of sensors, features based on the joint range of motion were more accurate than those based on spatio-temporal parameters. In particular, best results were obtained with the knee range of motion, calculated with four IMUs, placed bilaterally. The obtained findings provide data-driven evidence on which combination of sensor configurations and classification methods to be used during IMU-based gait analysis to grade the severity level of PD.


Asunto(s)
Marcha/fisiología , Enfermedad de Parkinson/diagnóstico , Procesamiento de Señales Asistido por Computador/instrumentación , Acelerometría/instrumentación , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA