RESUMEN
SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.
Asunto(s)
COVID-19 , Anticuerpos Antivirales , COVID-19/genética , Vacunas contra la COVID-19 , Cadenas HLA-DRB1/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , SARS-CoV-2RESUMEN
Tea polyphenolics have been suggested to possess blood glucose lowering properties by inhibiting sugar transporters in the small intestine and improving insulin sensitivity. In this report, we studied the effects of teas and tea catechins on the small intestinal sugar transporters, SGLT1 and GLUTs (GLUT1, 2 and 5). Green tea extract (GT), oolong tea extract (OT), and black tea extract (BT) inhibited glucose uptake into the intestinal Caco-2 cells with GT being the most potent inhibitor (IC50 : 0.077 mg/mL), followed by OT (IC50 : 0.136 mg/mL) and BT (IC50 : 0.56 mg/mL). GT and OT inhibition of glucose uptake was partial non-competitive, with an inhibitor constant (Ki ) = 0.0317 and 0.0571 mg/mL, respectively, whereas BT was pure non-competitive, Ki = 0.36 mg/mL. Oocytes injected to express small intestinal GLUTs were inhibited by teas, but SGLT1 was not. Furthermore, catechins present in teas were the predominant inhibitor of glucose uptake into Caco-2 cells, and gallated catechins the most potent: CG > ECG > EGCG ≥ GCG when compared to the non-gallated catechins (C, EC, GC, and EGC). In Caco-2 cells, individual tea catechins reduced the SGLT1 gene, but not protein expression levels. In contrast, GLUT2 gene and protein expression levels were reduced after 2 hours exposure to catechins but increased after 24 hours. These in vitro studies suggest teas containing catechins may be useful dietary supplements capable of blunting postprandial glycaemia in humans, including those with or at risk to Type 2 diabetes mellitus.
Asunto(s)
Antioxidantes/farmacología , Catequina/farmacología , Neoplasias del Colon/tratamiento farmacológico , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Extractos Vegetales/farmacología , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Té/química , Animales , Células CACO-2 , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Glucosa/metabolismo , Humanos , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Xenopus laevisRESUMEN
BACKGROUNDThe biology of Plasmodium vivax is markedly different from that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence.METHODSParticipants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA sequencing, and cytometry by time of flight, and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous data sets derived from prior controlled human malaria infection studies.RESULTSP. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute-phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein levels), leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation were significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease.CONCLUSIONP. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease.TRIAL REGISTRATIONClinicalTrials.gov NCT03797989.FUNDINGThe European Union's Horizon 2020 Research and Innovation programme, the Wellcome Trust, and the Royal Society.
Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Plasmodium vivax , Plasmodium falciparum , Activación de LinfocitosRESUMEN
BACKGROUND: COVID-19 vaccine-induced antibody responses are reduced in patients with inflammatory bowel disease (IBD) taking anti-TNF or tofacitinib after two vaccine doses. We sought to assess whether immunosuppressive treatments were associated with reduced antibody and T-cell responses in patients with IBD after a third vaccine dose. METHODS: VIP was a multicentre, prospective, case-control study done in nine centres in the UK. We recruited immunosuppressed patients with IBD and non-immunosuppressed healthy individuals. All participants were aged 18 years or older. The healthy control group had no diagnosis of IBD and no current treatment with systemic immunosuppressive therapy for any other indication. The immunosuppressed patients with IBD had an established diagnosis of Crohn's disease, ulcerative colitis, or unclassified IBD using standard definitions of IBD, and were receiving established treatment with one of six immunosuppressive regimens for at least 12 weeks at the time of first dose of SARS-CoV-2 vaccination. All participants had to have received three doses of an approved COVID-19 vaccine. SARS-CoV-2 spike antibody binding and T-cell responses were measured in all participant groups. The primary outcome was anti-SARS-CoV-2 spike (S1 receptor binding domain [RBD]) antibody concentration 28-49 days after the third vaccine dose, adjusted by age, homologous versus heterologous vaccine schedule, and previous SARS-CoV-2 infection. The primary outcome was assessed in all participants with available data. FINDINGS: Between Oct 18, 2021, and March 29, 2022, 352 participants were included in the study (thiopurine n=65, infliximab n=46, thiopurine plus infliximab combination therapy n=49, ustekinumab n=44, vedolizumab n=50, tofacitinib n=26, and healthy controls n=72). Geometric mean anti-SARS-CoV-2 S1 RBD antibody concentrations increased in all groups following a third vaccine dose, but were significantly lower in patients treated with infliximab (2736·8 U/mL [geometric SD 4·3]; p<0·0001), infliximab plus thiopurine (1818·3 U/mL [6·7]; p<0·0001), and tofacitinib (8071·5 U/mL [3·1]; p=0·0018) compared with the healthy control group (16 774·2 U/mL [2·6]). There were no significant differences in anti-SARS-CoV-2 S1 RBD antibody concentrations between the healthy control group and patients treated with thiopurine (12 019·7 U/mL [2·2]; p=0·099), ustekinumab (11 089·3 U/mL [2·8]; p=0·060), or vedolizumab (13 564·9 U/mL [2·4]; p=0·27). In multivariable modelling, lower anti-SARS-CoV-2 S1 RBD antibody concentrations were independently associated with infliximab (geometric mean ratio 0·15 [95% CI 0·11-0·21]; p<0·0001), tofacitinib (0·52 [CI 0·31-0·87]; p=0·012), and thiopurine (0·69 [0·51-0·95]; p=0·021), but not with ustekinumab (0·64 [0·39-1·06]; p=0·083), or vedolizumab (0·84 [0·54-1·30]; p=0·43). Previous SARS-CoV-2 infection (1·58 [1·22-2·05]; p=0·0006) was independently associated with higher anti-SARS-CoV-2 S1 RBD antibody concentrations and older age (0·88 [0·80-0·97]; p=0·0073) was independently associated with lower anti-SARS-CoV-2 S1 RBD antibody concentrations. Antigen-specific T-cell responses were similar in all groups, except for recipients of tofacitinib without evidence of previous infection, where T-cell responses were significantly reduced relative to healthy controls (p=0·021). INTERPRETATION: A third dose of COVID-19 vaccine induced a boost in antibody binding in immunosuppressed patients with IBD, but these responses were reduced in patients taking infliximab, infliximab plus thiopurine, and tofacitinib. Tofacitinib was also associated with reduced T-cell responses. These findings support continued prioritisation of immunosuppressed groups for further vaccine booster dosing, particularly patients on anti-TNF and JAK inhibitors. FUNDING: Pfizer.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Enfermedades Inflamatorias del Intestino , Inhibidores de las Cinasas Janus , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Estudios de Casos y Controles , Humanos , Inmunosupresores/efectos adversos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Infliximab/uso terapéutico , Estudios Prospectivos , SARS-CoV-2 , Linfocitos T , Inhibidores del Factor de Necrosis Tumoral , UstekinumabRESUMEN
The Omicron, or Pango lineage B.1.1.529, variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection against severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple BioNTech BNT162b2 messenger RNA-vaccinated health care workers (HCWs) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple-vaccinated individuals, but the magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCWs who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529.
Asunto(s)
Linfocitos B , Vacuna BNT162 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Linfocitos T , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , COVID-19/inmunología , COVID-19/prevención & control , Reacciones Cruzadas , Humanos , Ratones , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunologíaRESUMEN
Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.