Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Sci ; 115(5): 1564-1575, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342100

RESUMEN

Despite continuing advances in the development of effective new therapies, including immunotherapies, the prognosis of pancreatic cancer remains extremely poor. Gap junction proteins have become attractive targets for potential cancer therapy. However, the role of gap junction beta-4 (GJB4) protein remains unexplored in pancreatic cancer. Through bioinformatic analyses we discovered pancreatic cancer tissues showed higher levels of GJB4 transcripts compared to normal pancreatic tissues and this had a negative effect on overall survival in patients that had pancreatic cancer. The high expression of nuclear GJB4 was identified as a negative prognostic factor in such patients. Knockdown of GJB4 in cultured pancreatic cancer cells resulted in G0/G1 arrest followed by decreased cell proliferation and suppression of metastatic potential. The overexpression of GJB4 accelerated cell proliferation, migration, and invasion in a SUIT-2 cell line, whereas MET inhibitor canceled the acceleration. GJB4 suppression with siRNA significantly inhibited tumor growth in a mouse xenograft model. Mechanistically, suppression of GJB4 inhibited MET-AKT activities. Such data suggest that targeting the GJB4-MET axis could represent a promising new therapeutic strategy for pancreatic cancer.


Asunto(s)
Proliferación Celular , Conexinas , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-met , Animales , Femenino , Humanos , Masculino , Ratones , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Conexinas/metabolismo , Conexinas/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Metástasis de la Neoplasia , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Biomedicines ; 12(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38790973

RESUMEN

To elucidate the currently unknown molecular mechanisms responsible for the similarity and difference during the acquirement of resistance against gemcitabine (GEM) and paclitaxel (PTX) in patients with pancreatic carcinoma, we examined two-dimensional (2D) and three-dimensional (3D) cultures of parent MIA PaCa-2 cells (MIA PaCa-2-PA) and their GEM resistance cell line (MIA PaCa-2-GR) and PTX resistance (MIA PaCa-2-PR). Using these cells, we examined 3D spheroid configurations and cellular metabolism, including mitochondrial and glycolytic functions, with a Seahorse bio-analyzer and RNA sequencing analysis. Compared to the MIA PaCa-2-PA, (1) the formation of the 3D spheroids of MIA PaCa-2-GR or -PR was much slower, and (2) their mitochondrial and glycolytic functions were greatly modulated in MIA PaCa-2-GR or -PR, and such metabolic changes were also different between their 2D and 3D culture conditions. RNA sequencing and bioinformatic analyses of the differentially expressed genes (DEGs) using an ingenuity pathway analysis (IPA) suggested that various modulatory factors related to epithelial -mesenchymal transition (EMT) including STAT3, GLI1, ZNF367, NKX3-2, ZIC2, IFIT2, HEY1 and FBLX, may be the possible upstream regulators and/or causal network master regulators responsible for the acquirement of drug resistance in MIA PaCa-2-GR and -PR. In addition, among the prominently altered DEGs (Log2 fold changes more than 6 or less than -6), FABP5, IQSEC3, and GASK1B were identified as unique genes associated with their antisense RNA or pseudogenes, and among these, FABP5 and GASK1B are known to function as modulators of cancerous EMT. Therefore, the observations reported herein suggest that modulations of cancerous EMT may be key molecular mechanisms that are responsible for inducing chemoresistance against GEM or PTX in MIA PaCa-2 cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA