Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cancer Sci ; 113(6): 1909-1918, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35359025

RESUMEN

Infection with cagA-positive Helicobacter pylori strains plays an etiological role in the development of gastric cancer. The CagA protein is injected into gastric epithelial cells through a bacterial Type IV secretion system. Inside the host cells, CagA promiscuously associates with multiple host cell proteins including the prooncogenic phosphatase SHP2 that is required for full activation of the Ras-ERK pathway. CagA-SHP2 interaction aberrantly activates SHP2 and thereby deregulates Ras-ERK signaling. Cancer is regarded as a disease of the genome, indicating that H. pylori-mediated gastric carcinogenesis is also associated with genomic alterations in the host cell. Indeed, accumulating evidence has indicated that H. pylori infection provokes DNA double-stranded breaks (DSBs) by both CagA-dependent and CagA-independent mechanisms. DSBs are repaired by either error-free homologous recombination (HR) or error-prone non-homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ). Infection with cagA-positive H. pylori inhibits RAD51 expression while dampening cytoplasmic-to-nuclear translocalization of BRCA1, causing replication fork instability and HR defects (known as "BRCAness"), which collectively provoke genomic hypermutation via non-HR-mediated DSB repair. H. pylori also subverts multiple DNA damage responses including DNA repair systems. Infection with H. pylori additionally inhibits the function of the p53 tumor suppressor, thereby dampening DNA damage-induced apoptosis, while promoting proliferation of CagA-delivered cells. Therefore, H. pylori cagA-positive strains promote abnormal expansion of cells with BRCAness, which dramatically increases the chance of generating driver gene mutations in the host cells. Once such driver mutations are acquired, H. pylori CagA is no longer required for subsequent gastric carcinogenesis (Hit-and-Run carcinogenesis).


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carcinogénesis/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Humanos , Neoplasias Gástricas/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269634

RESUMEN

The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the H. pylori CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks Ceacam5 and Ceacam6, no significant HopQ-Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by cagA-positive H. pylori, and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for H. pylori infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of H. pylori-delivered CagA in gastric pathogenesis, including the development of gastric cancer.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cricetinae , Cricetulus , Células Epiteliales/metabolismo , Helicobacter pylori/metabolismo , Ratones , Transporte de Proteínas , Estómago , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163588

RESUMEN

The proteins from the Fanconi Anemia (FA) pathway of DNA repair maintain DNA replication fork integrity by preventing the unscheduled degradation of nascent DNA at regions of stalled replication forks. Here, we ask if the bacterial pathogen H. pylori exploits the fork stabilisation machinery to generate double stand breaks (DSBs) and genomic instability. Specifically, we study if the H. pylori virulence factor CagA generates host genomic DSBs through replication fork destabilisation and collapse. An inducible gastric cancer model was used to examine global CagA-dependent transcriptomic and proteomic alterations, using RNA sequencing and SILAC-based mass spectrometry, respectively. The transcriptional alterations were confirmed in gastric cancer cell lines infected with H. pylori. Functional analysis was performed using chromatin fractionation, pulsed-field gel electrophoresis (PFGE), and single molecule DNA replication/repair fiber assays. We found a core set of 31 DNA repair factors including the FA genes FANCI, FANCD2, BRCA1, and BRCA2 that were downregulated following CagA expression. H. pylori infection of gastric cancer cell lines showed downregulation of the aforementioned FA genes in a CagA-dependent manner. Consistent with FA pathway downregulation, chromatin purification studies revealed impaired levels of Rad51 but higher recruitment of the nuclease MRE11 on the chromatin of CagA-expressing cells, suggesting impaired fork protection. In line with the above data, fibre assays revealed higher fork degradation, lower fork speed, daughter strands gap accumulation, and impaired re-start of replication forks in the presence of CagA, indicating compromised genome stability. By downregulating the expression of key DNA repair genes such as FANCI, FANCD2, BRCA1, and BRCA2, H. pylori CagA compromises host replication fork stability and induces DNA DSBs through fork collapse. These data unveil an intriguing example of a bacterial virulence factor that induces genomic instability by interfering with the host replication fork stabilisation machinery.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , Regulación hacia Abajo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Proteínas Oncogénicas/metabolismo , Transducción de Señal , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Línea Celular , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Infecciones por Helicobacter/genética , Helicobacter pylori/genética , Humanos , Proteínas Oncogénicas/genética
4.
Cancer Sci ; 111(5): 1596-1606, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32198795

RESUMEN

Chronic infection with Helicobacter pylori cagA-positive strains is causally associated with the development of gastric diseases, most notably gastric cancer. The cagA-encoded CagA protein, which is injected into gastric epithelial cells by bacterial type IV secretion, undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) segments (EPIYA-A, EPIYA-B, EPIYA-C, and EPIYA-D), which are present in various numbers and combinations in its C-terminal polymorphic region, thereby enabling CagA to promiscuously interact with SH2 domain-containing host cell proteins, including the prooncogenic SH2 domain-containing protein tyrosine phosphatase 2 (SHP2). Perturbation of host protein functions by aberrant complex formation with CagA has been considered to contribute to the development of gastric cancer. Here we show that SHIP2, an SH2 domain-containing phosphatidylinositol 5'-phosphatase, is a hitherto undiscovered CagA-binding host protein. Similar to SHP2, SHIP2 binds to the Western CagA-specific EPIYA-C segment or East Asian CagA-specific EPIYA-D segment through the SH2 domain in a tyrosine phosphorylation-dependent manner. In contrast to the case of SHP2, however, SHIP2 binds more strongly to EPIYA-C than to EPIYA-D. Interaction with CagA tethers SHIP2 to the plasma membrane, where it mediates production of phosphatidylinositol 3,4-diphosphate [PI(3,4)P2 ]. The CagA-SHIP2 interaction also potentiates the morphogenetic activity of CagA, which is caused by CagA-deregulated SHP2. This study indicates that initially delivered CagA interacts with SHIP2 and thereby strengthens H. pylori-host cell attachment by altering membrane phosphatidylinositol compositions, which potentiates subsequent delivery of CagA that binds to and thereby deregulates the prooncogenic phosphatase SHP2.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Células Epiteliales/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Secuencias de Aminoácidos , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Línea Celular , Membrana Celular/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Dominios Homologos src
5.
Cancer Sci ; 108(5): 931-940, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28235245

RESUMEN

Recent studies have indicated that increased expression of the M2 isoform of pyruvate kinase (PKM2) is involved in glycolysis and tumor development. However, little is known about the role of PKM2 in gastric cancer (GC). Therefore, we examined the expression and function of PKM2 in human GC. We evaluated PKM1 and PKM2 expression by quantitative RT-PCR in gastric tissues from 10 patients who underwent gastric endoscopic submucosal dissection, 80 patients who underwent gastrectomy, and seven healthy volunteers, and analyzed the correlation with clinicopathological variables. To assess the function of PKM2, we generated PKM2-knockdown GC cells, and investigated the phenotypic changes. Furthermore, we examined the induction of PKM2 expression by cytotoxin-associated gene A (CagA), a pathogenic factor of Helicobacter pylori, using CagA-inducible GC cells. We found that PKM2 was predominantly expressed not only in GC lesions but also in the normal gastric regions of GC patients and in the gastric mucosa of healthy volunteers. The PKM2 expression was significantly higher in carcinoma compared to non-cancerous tissue and was associated with venous invasion. Knockdown of PKM2 in GC cells caused significant decreases in cellular proliferation, migration, anchorage-independent growth, and sphere formation in vitro, and in tumor growth and liver metastasis in vivo. The serine concentration-dependent cell proliferation was also inhibited by PKM2 silencing. Furthermore, we found that PKM2 expression was upregulated by CagA by way of the Erk pathway. These results suggested that enhanced PKM2 expression plays a pivotal role in the carcinogenesis and development of GC in part by regulating cancer-specific metabolism.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/genética , Neoplasias Gástricas/genética , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Anciano , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glucólisis/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/genética , Masculino , Isoformas de Proteínas/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Regulación hacia Arriba/genética , Proteínas de Unión a Hormona Tiroide
6.
Cancer Sci ; 107(7): 972-80, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27116701

RESUMEN

Pragmin is one of the few mammalian proteins containing the Glu-Pro-Ile-Tyr-Ala (EPIYA) tyrosine-phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain-containing mammalian proteins such as the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) and the C-terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine-phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine-238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin-Csk interaction creates a feed-forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin-Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell-matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin-Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis.


Asunto(s)
Proteínas Portadoras/metabolismo , Movimiento Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Familia-src Quinasas/metabolismo , Secuencias de Aminoácidos , Animales , Biocatálisis , Proteína Tirosina Quinasa CSK , Proteínas Portadoras/química , Forma de la Célula , Células Cultivadas , Activación Enzimática , Retroalimentación Fisiológica , Adhesiones Focales , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Invasividad Neoplásica , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Especificidad por Sustrato
7.
Cancer Sci ; 105(3): 245-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24354359

RESUMEN

Helicobacter pylori strains carrying the cagA gene are associated with severe disease outcomes, most notably gastric cancer. CagA protein is delivered into gastric epithelial cells by a type IV secretion system. The translocated CagA undergoes tyrosine phosphorylation at the C-terminal EPIYA motifs by host cell kinases. Tyrosine-phosphorylated CagA acquires the ability to interact with and activate SHP2, thereby activating mitogenic signaling and inducing cell morphological transformation (hummingbird phenotype). CagA also interacts with PAR1b via the CM sequence, resulting in induction of junctional and polarity defects. Furthermore, CagA-PAR1b interaction stabilizes the CagA-SHP2 complex. Because transgenic mice systemically expressing CagA develop gastrointestinal and hematological malignancies, CagA is recognized as a bacterium-derived oncoprotein. Interestingly, the C-terminal region of CagA displays a large diversity among H. pylori strains, which influences the ability of CagA to bind to SHP2 and PAR1b. In the present study, we investigated the biological activity of v225d CagA, an Amerindian CagA of H. pylori isolated from a Venezuelan Piaroa Amerindian subject, because the variant CagA does not possess a canonical CM sequence. We found that v225d CagA interacts with SHP2 but not PAR1b. Furthermore, SHP2-binding activity of v225d CagA was much lower than that of CagA of H. pylori isolated from Western countries (Western CagA). v225d CagA also displayed a reduced ability to induce the hummingbird phenotype than that of Western CagA. Given that perturbation of PAR1b and SHP2 by CagA underlies the oncogenic potential of CagA, the v225d strain is considered to be less oncogenic than other well-studied cagA-positive H. pylori strains.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Células COS , Chlorocebus aethiops , Perros , Células Epiteliales/microbiología , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Humanos , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(36): 14938-43, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21873224

RESUMEN

Several pathogenic bacteria have adopted effector proteins that, upon delivery into mammalian cells, undergo tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) or EPIYA-like sequence motif by host kinases such as Src family kinases (SFKs). This EPIYA phosphorylation triggers complex formation of bacterial effectors with SH2 domain-containing proteins that results in perturbation of host cell signaling and subsequent pathogenesis. Although the presence of such an anomalous protein interaction suggests the existence of a mammalian EPIYA-containing protein whose function is mimicked or subverted by bacterial EPIYA effectors, no molecule that uses the EPIYA motif for biological function has so far been reported in mammals. Here we show that mammalian Pragmin/SgK223 undergoes tyrosine phosphorylation at the EPIYA motif by SFKs and thereby acquires the ability to interact with the SH2 domain of the C-terminal Src kinase (Csk), a negative regulator of SFKs. The Pragmin-Csk interaction prevents translocalization of Csk from the cytoplasm to the membrane and subsequent inactivation of membrane-associated SFKs. As a result, SFK activity is sustained in cells where Pragmin is phosphorylated at the EPIYA motif. Because EPIYA phosphorylation of Pragmin is mediated by SFKs, cytoplasmic sequestration of Csk by Pragmin establishes a positive feedback regulation of SFK activation. Remarkably, the Helicobacter pylori EPIYA effector CagA binds to the Csk SH2 domain in place of Pragmin and enforces membrane recruitment of Csk and subsequent inhibition of SFKs. This work identifies Pragmin as a mammalian EPIYA effector and suggests that bacterial EPIYA effectors target Pragmin to subvert SFKs for successful infection.


Asunto(s)
Proteínas Portadoras/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Secuencias de Aminoácidos , Proteínas Portadoras/genética , Línea Celular Tumoral , Infecciones por Helicobacter/genética , Helicobacter pylori/patogenicidad , Humanos , Fosforilación , Dominios Homologos src , Familia-src Quinasas/genética
9.
Nature ; 447(7142): 330-3, 2007 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-17507984

RESUMEN

Helicobacter pylori cagA-positive strains are associated with gastritis, ulcerations and gastric adenocarcinoma. CagA is delivered into gastric epithelial cells and, on tyrosine phosphorylation, specifically binds and activates the SHP2 oncoprotein, thereby inducing the formation of an elongated cell shape known as the 'hummingbird' phenotype. In polarized epithelial cells, CagA also disrupts the tight junction and causes loss of apical-basolateral polarity. We show here that H. pylori CagA specifically interacts with PAR1/MARK kinase, which has an essential role in epithelial cell polarity. Association of CagA inhibits PAR1 kinase activity and prevents atypical protein kinase C (aPKC)-mediated PAR1 phosphorylation, which dissociates PAR1 from the membrane, collectively causing junctional and polarity defects. Because of the multimeric nature of PAR1 (ref. 14), PAR1 also promotes CagA multimerization, which stabilizes the CagA-SHP2 interaction. Furthermore, induction of the hummingbird phenotype by CagA-activated SHP2 requires simultaneous inhibition of PAR1 kinase activity by CagA. Thus, the CagA-PAR1 interaction not only elicits the junctional and polarity defects but also promotes the morphogenetic activity of CagA. Our findings revealed that PAR1 is a key target of H. pylori CagA in the disorganization of gastric epithelial architecture underlying mucosal damage, inflammation and carcinogenesis.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Polaridad Celular , Células Epiteliales/citología , Células Epiteliales/enzimología , Helicobacter pylori , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Línea Celular , Células Epiteliales/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Cuaternaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Tirosina Fosfatasas/metabolismo , Uniones Estrechas/metabolismo
10.
J Biol Chem ; 286(38): 33622-31, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21813645

RESUMEN

Chronic infection with Helicobacter pylori cagA-positive strains is associated with atrophic gastritis, peptic ulceration, and gastric carcinoma. The cagA gene product, CagA, is delivered into gastric epithelial cells via type IV secretion, where it undergoes tyrosine phosphorylation at the EPIYA motifs. Tyrosine-phosphorylated CagA binds and aberrantly activates the oncogenic tyrosine phosphatase SHP2, which mediates induction of elongated cell morphology (hummingbird phenotype) that reflects CagA virulence. CagA also binds and inhibits the polarity-regulating kinase partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) via the CagA multimerization (CM) sequence independently of tyrosine phosphorylation. Because PAR1 exists as a homodimer, two CagA proteins appear to be passively dimerized through complex formation with a PAR1 dimer in cells. Interestingly, a CagA mutant that lacks the CM sequence displays a reduced SHP2 binding activity and exhibits an attenuated ability to induce the hummingbird phenotype, indicating that the CagA-PAR1 interaction also influences the morphological transformation. Here we investigated the role of CagA dimerization in induction of the hummingbird phenotype with the use of a chemical dimerizer, coumermycin. We found that CagA dimerization markedly stabilizes the CagA-SHP2 complex and thereby potentiates SHP2 deregulation, causing an increase in the number of hummingbird cells. Protrusions of hummingbird cells induced by chemical dimerization of CagA are further elongated by simultaneous inhibition of PAR1. This study revealed a role of the CM sequence in amplifying the magnitude of SHP2 deregulation by CagA, which, in conjunction with the CM sequence-mediated inhibition of PAR1, evokes morphological transformation that reflects in vivo CagA virulence.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Helicobacter pylori/patogenicidad , Multimerización de Proteína , Aminocumarinas/farmacología , Sitios de Unión , Girasa de ADN/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Helicobacter pylori/efectos de los fármacos , Humanos , Proteínas Mutantes/metabolismo , Fenotipo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Multimerización de Proteína/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Estómago/citología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Virulencia/efectos de los fármacos
11.
J Biol Chem ; 286(52): 44576-84, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22072711

RESUMEN

Partitioning-defective 1b (PAR1b), also known as microtubule affinity-regulating kinase 2 (MARK2), is a member of evolutionally conserved PAR1/MARK serine/threonine kinase family, which plays a key role in the establishment and maintenance of cell polarity at least partly by phosphorylating microtubule-associated proteins (MAPs) that regulate microtubule stability. PAR1b has also been reported to influence actin cytoskeletal organization, raising the possibility that PAR1b functionally interacts with the Rho family of small GTPases, central regulators of the actin cytoskeletal system. Consistent with this notion, PAR1 was recently found to be physically associated with a RhoA-specific guanine nucleotide exchange factor H1 (GEF-H1). This observation suggests a functional link between PAR1b and GEF-H1. Here we show that PAR1b induces phosphorylation of GEF-H1 on serine 885 and serine 959. We also show that PAR1b-induced serine 885/serine 959 phosphorylation inhibits RhoA-specific GEF activity of GEF-H1. As a consequence, GEF-H1 phosphorylated on both of the serine residues loses the ability to stimulate RhoA and thereby fails to induce RhoA-dependent stress fiber formation. These findings indicate that PAR1b not only regulates microtubule stability through phosphorylation of MAPs but also influences actin stress fiber formation by inducing GEF-H1 phosphorylation. The dual function of PAR1b in the microtubule-based cytoskeletal system and the actin-based cytoskeletal system in the coordinated regulation of cell polarity, cell morphology, and cell movement.


Asunto(s)
Actinas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fibras de Estrés/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Actinas/genética , Animales , Células COS , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Chlorocebus aethiops , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Factores de Intercambio de Guanina Nucleótido Rho , Fibras de Estrés/genética , Proteína de Unión al GTP rhoA/genética
12.
Biochem Biophys Res Commun ; 420(2): 263-8, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22414689

RESUMEN

Escherichia coli Orf135 hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP, 8-oxo-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP. Nucleotide pool sanitization by Orf135 is important since nucleotides are continually subjected to potential damage by reactive oxygen species produced during respiration. Orf135 is a member of the Nudix family of proteins which hydrolyze nucleoside diphosphate derivatives. Nudix hydrolases are characterized by the presence of a conserved motif, even though they recognize various substrates and possess a variety of substrate binding pockets. We investigated the tertiary structure of Orf135 and its interaction with a 2-hydroxy-dATP analog using NMR. We report on the solution structure of Orf135, which should contribute towards a structural understanding of Orf135 and its interaction with substrates.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Escherichia coli/enzimología , Pirofosfatasas/química , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sitios de Unión , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Especificidad por Sustrato
13.
Cell Host Microbe ; 29(6): 941-958.e10, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33989515

RESUMEN

Infection with CagA-producing Helicobacter pylori plays a causative role in the development of gastric cancer. Upon delivery into gastric epithelial cells, CagA deregulates prooncogenic phosphatase SHP2 while inhibiting polarity-regulating kinase PAR1b through complex formation. Here, we show that CagA/PAR1b interaction subverts nuclear translocation of BRCA1 by inhibiting PAR1b-mediated BRCA1 phosphorylation. It hereby induces BRCAness that promotes DNA double-strand breaks (DSBs) while disabling error-free homologous recombination-mediated DNA repair. The CagA/PAR1b interaction also stimulates Hippo signaling that circumvents apoptosis of DNA-damaged cells, giving cells time to repair DSBs through error-prone mechanisms. The DSB-activated p53-p21Cip1 axis inhibits proliferation of CagA-delivered cells, but the inhibition can be overcome by p53 inactivation. Indeed, sequential pulses of CagA in TP53-mutant cells drove somatic mutation with BRCAness-associated genetic signatures. Expansion of CagA-delivered cells with BRCAness-mediated genome instability, from which CagA-independent cancer-predisposing cells arise, provides a plausible "hit-and-run mechanism" of H. pylori CagA for gastric carcinogenesis.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteína BRCA1/metabolismo , Proteínas Bacterianas/metabolismo , Células Epiteliales/metabolismo , Inestabilidad Genómica , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Neoplasias Gástricas/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinogénesis/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Células Epiteliales/microbiología , Femenino , Regulación Neoplásica de la Expresión Génica , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Serina-Treonina Quinasa 3 , Transducción de Señal , Estómago/microbiología , Proteína p53 Supresora de Tumor/metabolismo
14.
J Biol Chem ; 284(34): 23024-36, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19553659

RESUMEN

Helicobacter pylori CagA plays a key role in gastric carcinogenesis. Upon delivery into gastric epithelial cells, CagA binds and deregulates SHP-2 phosphatase, a bona fide oncoprotein, thereby causing sustained ERK activation and impaired focal adhesions. CagA also binds and inhibits PAR1b/MARK2, one of the four members of the PAR1 family of kinases, to elicit epithelial polarity defect. In nonpolarized gastric epithelial cells, CagA induces the hummingbird phenotype, an extremely elongated cell shape characterized by a rear retraction defect. This morphological change is dependent on CagA-deregulated SHP-2 and is thus thought to reflect the oncogenic potential of CagA. In this study, we investigated the role of the PAR1 family of kinases in the hummingbird phenotype. We found that CagA binds not only PAR1b but also other PAR1 isoforms, with order of strength as follows: PAR1b > PAR1d >or= PAR1a > PAR1c. Binding of CagA with PAR1 isoforms inhibits the kinase activity. This abolishes the ability of PAR1 to destabilize microtubules and thereby promotes disassembly of focal adhesions, which contributes to the hummingbird phenotype. Consistently, PAR1 knockdown potentiates induction of the hummingbird phenotype by CagA. The morphogenetic activity of CagA was also found to be augmented through inhibition of non-muscle myosin II. Because myosin II is functionally associated with PAR1, perturbation of PAR1-regulated myosin II by CagA may underlie the defect of rear retraction in the hummingbird phenotype. Our findings reveal that CagA systemically inhibits PAR1 family kinases and indicate that malfunctioning of microtubules and myosin II by CagA-mediated PAR1 inhibition cooperates with deregulated SHP-2 in the morphogenetic activity of CagA.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Células COS , Línea Celular , Polaridad Celular/genética , Polaridad Celular/fisiología , Chlorocebus aethiops , Perros , Electroforesis en Gel de Poliacrilamida , Humanos , Immunoblotting , Inmunoprecipitación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Uniones Estrechas/metabolismo
15.
Dev Cell ; 49(4): 590-604.e9, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31080060

RESUMEN

High-molecular-weight hyaluronan, a major component of the extracellular matrix, is anti-oncogenic, whereas low-molecular-weight hyaluronan is pro-oncogenic, though the mechanisms underlying the size-dependent opposite bioactivities of hyaluronan remain uncertain. We show here that treatment with high-molecular-weight hyaluronan stimulates tumor-suppressive Hippo signaling in breast epithelial cells. Mechanistically, clustering of the CD44 extracellular domain by high-molecular-weight hyaluronan leads to recruitment of the polarity-regulating kinase PAR1b by the CD44 intracellular domain, which results in disruption of the Hippo signaling-inhibitory PAR1b-MST complex. Once liberated from PAR1b, MST activates Hippo signaling. Conversely, low-molecular-weight hyaluronan, which is produced by hyaluronidase-mediated degradation of high-molecular-weight hyaluronan, inhibits Hippo signaling by competing with high-molecular-weight hyaluronan for CD44 binding. Triple-negative breast cancers with higher hyaluronidase-2 expression show poorer prognosis than those with lower hyaluronidase-2 expression. Consistently, decreased hyaluronidase-2 is associated with reduced tumorigenicity in a tumor xenograft model. Hence, perturbation of high-molecular-weight hyaluronan-mediated Hippo signaling activation contributes to cancer aggressiveness.


Asunto(s)
Receptores de Hialuranos/metabolismo , Ácido Hialurónico/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Recuento de Células , Línea Celular Tumoral , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Femenino , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Xenoinjertos , Vía de Señalización Hippo , Humanos , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/patología
16.
Int J Cancer ; 122(4): 823-31, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17960618

RESUMEN

Infection with Helicobacter pylori cagA-positive strains causes gastritis and peptic ulceration and is associated with gastric adenocarcinoma. The cagA gene product CagA is delivered into gastric epithelial cells, where it undergoes tyrosine phosphorylation by Src family kinases at the C-terminal EPIYA-repeat region. Tyrosine-phosphorylated CagA specifically binds and activates SHP-2 tyrosine phosphatase, causing cell morphological transformation known as the hummingbird phenotype. CagA also destabilizes the E-cadherin/beta-catenin complex to elicit aberrant activation of the beta-catenin signal that underlies intestinal metaplasia. Here we show that translocalization of membranous beta-catenin and subsequent activation of the beta-catenin signal by CagA requires the EPIYA-repeat region, which is characterized by structural variation between CagA of H. pylori isolated in Western countries (Western CagA) and that of East Asian H. pylori isolates (East Asian CagA), but is independent of CagA tyrosine phosphorylation. Detailed analysis using a series of Western and East Asian CagA mutants revealed that deregulation of beta-catenin requires residues 1009-1086 and residues 908-1012 of ABCCC Western CagA and ABD East Asian CagA, respectively, and is mediated by the 16-amino-acid CagA multimerization sequence that is conserved between the 2 geographically distinct H. pylori CagA species. Our results indicate that aberrant activation of the beta-catenin signal, which promotes precancerous intestinal metaplasia, is an inherent and fundamental CagA activity that is independent of the structural polymorphism of CagA.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Transformación Celular Neoplásica/metabolismo , Lesiones Precancerosas/metabolismo , Neoplasias Gástricas/etiología , beta Catenina/metabolismo , Western Blotting , Cadherinas/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Dimerización , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , beta Catenina/genética
17.
Cancer Sci ; 99(10): 2004-11, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19016760

RESUMEN

Helicobacter pylori (H. pylori) cagA-positive strains are associated with gastritis, peptic ulcerations, and gastric adenocarcinoma. Upon delivery into gastric epithelial cells, the cagA-encoded CagA protein specifically binds and aberrantly activates SHP-2 oncoprotein in a manner that is dependent on CagA tyrosine phosphorylation. CagA-deregulated SHP-2 then elicits aberrant Erk activation while causing an elongated cell shape known as the hummingbird phenotype. In polarized epithelial cells, CagA also binds to PAR1b/MARK2 and inhibits the PAR1b kinase activity, thereby disrupting tight junctions and epithelial cell polarity independent of CagA tyrosine phosphorylation. We show here that the CagA-multimerization (CM) sequence that mediates interaction of CagA with PAR1b is not only essential for the CagA-triggered junctional defects but also plays an important role in induction of the hummingbird phenotype by potentiating CagA-SHP-2 complex formation. We also show that the CM sequence of CagA isolated from East Asian H. pylori (referred to as the E-CM sequence) binds PAR1b more strongly than that of CagA isolated from Western H. pylori (referred to as the W-CM sequence). Within Western CagA species, the ability to bind PAR1b is proportional to the number of W-CM sequences. Furthermore, the level of PAR1b-binding activity of CagA correlates with the magnitude of junctional defects and the degree of hummingbird phenotype induction. Our findings reveal that structural diversity in the CM sequence is an important determinant for the degree of virulence of CagA, a bacterial oncoprotein that is associated with gastric carcinogenesis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Calgranulina A/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidad , Adenoviridae/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Células COS , Calgranulina A/química , Calgranulina A/genética , Línea Celular , Polaridad Celular , Chlorocebus aethiops , Perros , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Vectores Genéticos , Helicobacter pylori/genética , Humanos , Riñón/citología , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Estómago/citología , Uniones Estrechas/metabolismo , Transducción Genética , Transfección , Virulencia/genética
18.
Biomed Res ; 37(1): 21-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26912137

RESUMEN

More than 50% of people in the world are infected with Helicobacter pylori (H. pylori), which induces various gastric diseases. Especially, epidemiological studies have shown that H. pylori infection is a major risk factor for gastric cancer. It has been reported that the levels of interleukin (IL)-1ß are upregulated in gastric tissues of patients with H. pylori infection. In this study, we investigated the induction mechanism of IL-1ß during H. pylori infection. We found that IL-1ßmRNA and protein were induced in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells after H. pylori infection. This IL-1ß production was inhibited by a caspase-1 inhibitor and a ROS inhibitor. Furthermore, K(+) efflux and Ca(2+) signaling were also involved in this process. These data suggest that NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3) and its complex, known as NLRP3 inflammasome, are involved in IL-1ß production during H. pylori infection because it is reported that NLRP3 inflammasome is activated by ROS, K(+) efflux and/or Ca(2+) signaling. These findings may provide therapeutic strategy for the control of gastric cancer in H. pylori-infected patients.


Asunto(s)
Infecciones por Helicobacter/metabolismo , Helicobacter pylori , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Adenosina Trifosfato/metabolismo , Señalización del Calcio , Caspasa 1/metabolismo , Línea Celular , Espacio Extracelular/metabolismo , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/inmunología , Helicobacter pylori/inmunología , Humanos , Interleucina-1beta/genética , Espacio Intracelular/metabolismo , Macrófagos/inmunología , Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Sci Rep ; 6: 18346, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26739388

RESUMEN

CagA, encoded by cytotoxin-associated gene A (cagA), is a major virulence factor of Helicobacter pylori, a gastric pathogen involved in the development of upper gastrointestinal diseases. Infection with cagA-positive H. pylori may also be associated with diseases outside the stomach, although the mechanisms through which H. pylori infection promotes extragastric diseases remain unknown. Here, we report that CagA is present in serum-derived extracellular vesicles, known as exosomes, in patients infected with cagA-positive H. pylori (n = 4). We also found that gastric epithelial cells inducibly expressing CagA secrete exosomes containing CagA. Addition of purified CagA-containing exosomes to gastric epithelial cells induced an elongated cell shape, indicating that the exosomes deliver functional CagA into cells. These findings indicated that exosomes secreted from CagA-expressing gastric epithelial cells may enter into circulation, delivering CagA to distant organs and tissues. Thus, CagA-containing exosomes may be involved in the development of extragastric disorders associated with cagA-positive H. pylori infection.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Exosomas/metabolismo , Helicobacter pylori/fisiología , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Transporte Biológico , Biomarcadores , Línea Celular , Cromatografía Liquida , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Humanos , Transporte de Proteínas , Neoplasias Gástricas/etiología , Espectrometría de Masas en Tándem , Factores de Virulencia
20.
Nat Microbiol ; 1: 16026, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-27572445

RESUMEN

Most if not all gastric cancers are associated with chronic infection of the stomach mucosa with Helicobacter pylori cagA-positive strains(1-4). Approximately 10% of gastric cancers also harbour Epstein-Barr virus (EBV) in the cancer cells(5,6). Following delivery into gastric epithelial cells via type IV secretion(7,8), the cagA-encoded CagA protein undergoes tyrosine phosphorylation on the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs initially by Src family kinases (SFKs) and then by c-Abl(9,10). Tyrosine-phosphorylated CagA binds to the pro-oncogenic protein tyrosine phosphatase SHP2 and thereby deregulates the phosphatase activity(11,12), which has been considered to play an important role in gastric carcinogenesis(13). Here we show that the SHP2 homologue SHP1 interacts with CagA independently of the EPIYA motif. The interaction potentiates the phosphatase activity of SHP1 that dampens the oncogenic action of CagA by dephosphorylating the CagA EPIYA motifs. In vitro infection of gastric epithelial cells with EBV induces SHP1 promoter hypermethylation, which strengthens phosphorylation-dependent CagA action via epigenetic downregulation of SHP1 expression. Clinical specimens of EBV-positive gastric cancers also exhibit SHP1 hypermethylation with reduced SHP1 expression. The results reveal that SHP1 is the long-sought phosphatase that can antagonize CagA. Augmented H. pylori CagA activity, via SHP1 inhibition, might also contribute to the development of EBV-positive gastric cancer.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Helicobacter pylori/patogenicidad , Herpesvirus Humano 4/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Proteína Tirosina Fosfatasa no Receptora Tipo 6/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Carcinogénesis , Línea Celular Tumoral , Metilación de ADN , Células Epiteliales/microbiología , Células Epiteliales/virología , Humanos , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA