Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38095299

RESUMEN

Binocular vision requires the segregation of retinal ganglion cell (RGC) axons extending from the retina into the ipsilateral and contralateral optic tracts. RGC axon segregation occurs at the optic chiasm, which forms at the ventral diencephalon midline. Using expression analyses, retinal explants and genetically modified mice, we demonstrate that CXCL12 (SDF1) is required for axon segregation at the optic chiasm. CXCL12 is expressed by the meninges bordering the optic pathway, and CXCR4 by both ipsilaterally and contralaterally projecting RGCs. CXCL12 or ventral diencephalon meninges potently promoted axon outgrowth from both ipsilaterally and contralaterally projecting RGCs. Further, a higher proportion of axons projected ipsilaterally in mice lacking CXCL12 or its receptor CXCR4 compared with wild-type mice as a result of misrouting of presumptive contralaterally specified RGC axons. Although RGCs also expressed the alternative CXCL12 receptor ACKR3, the optic chiasm developed normally in mice lacking ACKR3. Our data support a model whereby meningeal-derived CXCL12 helps drive axon growth from CXCR4-expressing RGCs towards the diencephalon midline, enabling contralateral axon growth. These findings further our understanding of the molecular and cellular mechanisms controlling optic pathway development.


Asunto(s)
Quiasma Óptico , Células Ganglionares de la Retina , Animales , Ratones , Axones/metabolismo , Diencéfalo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Vías Visuales
2.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277365

RESUMEN

Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm-to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.


Asunto(s)
Visión Binocular/fisiología , Vías Visuales/fisiología , Animales , Axones/metabolismo , Encéfalo/anatomía & histología , Linaje de la Célula , Humanos , Células Ganglionares de la Retina/metabolismo
3.
Glia ; 62(3): 374-86, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375670

RESUMEN

Signaling through fibroblast growth factor receptors (FGFRs) is essential for many cellular processes including proliferation and migration, as well as differentiation events such as myelination. Anosmin-1 is an extracellular matrix (ECM) glycoprotein that interacts with the fibroblast growth factor receptor 1 (FGFR1) to exert its biological actions through this receptor, although the intracellular pathways underlying anosmin-1 signaling remain largely unknown. This protein is defective in the X-linked form of Kallmann syndrome (KS) and has a prominent role in the migration of neuronal and oligodendroglial precursors. We have shown that anosmin-1 exerts a chemotactic effect via FGFR1 on neuronal precursors from the subventricular zone (SVZ) and the essential role of the ERK1/2 signaling. We report here the positive chemotactic effect of FGF2 and anosmin-1 on rat and mouse postnatal OPCs via FGFR1. The same effect was observed with the truncated N-terminal region of anosmin-1 (A1Nt). The introduction in anosmin-1 of the missense mutation F517L found in patients suffering from KS annulled the chemotactic activity; however, the mutant form carrying the disease-causing mutation E514K also found in KS patients, behaved as the wild-type protein. The chemoattraction exhibited by FGF2 and anosmin-1 on OPCs was blocked by the mitogen-activated protein kinase (MAPK) inhibitor U0126, suggesting that the activation of the ERK1/2 MAPK signaling pathway following interaction with the FGFR1 is necessary for FGF2 and anosmin-1 to exert their chemotactic effect. In fact, both proteins were able to induce the phosphorylation of the ERK1/2 kinases after the activation of the FGFR1 receptor.


Asunto(s)
Quimiotaxis/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Células Madre/fisiología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Cricetulus , Inhibidores Enzimáticos/farmacología , Proteínas de la Matriz Extracelular/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Gangliósidos/metabolismo , Humanos , Ventrículos Laterales/citología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/efectos de los fármacos , Ratas , Ratas Wistar , Células Madre/efectos de los fármacos , Factores de Tiempo
4.
J Neurochem ; 124(5): 708-20, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23189990

RESUMEN

The protein anosmin-1, coded by the KAL1 gene responsible for the X-linked form of Kallmann syndrome (KS), exerts its biological effects mainly through the interaction with and signal modulation of fibroblast growth factor receptor 1 (FGFR1). We have previously shown the interaction of the third fibronectin-like type 3 (FnIII) domain and the N-terminal region of anosmin-1 with FGFR1. Here, we demonstrate that missense mutations reported in patients with KS, C172R and N267K did not alter or substantially reduce, respectively, the binding to FGFR1. These substitutions annulled the chemoattraction of the full-length protein over subventricular zone (SVZ) neuronal precursors (NPs), but they did not annul it in the N-terminal-truncated protein (A1Nt). We also show that although not essential for binding to FGFR1, the cysteine-rich (CR) region is necessary for anosmin-1 function and that FnIII.3 cannot substitute for FnIII.1 function. Truncated proteins recapitulating nonsense mutations found in KS patients did not show the chemotropic effect on SVZ NPs, suggesting that the presence behind FnIII.1 of any part of anosmin-1 produces an unstable protein incapable of action. We also identify the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway as necessary for the chemotropic effect exerted by FGF2 and anosmin-1 on rat SVZ NPs.


Asunto(s)
Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/metabolismo , Síndrome de Kallmann/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de la Matriz Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Síndrome de Kallmann/genética , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de la Leche/química , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Wistar , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química
5.
Brain Struct Funct ; 228(3-4): 907-920, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36995433

RESUMEN

The development and survival of dopaminergic neurons are influenced by the fibroblast growth factor (FGF) pathway. Anosmin-1 (A1) is an extracellular matrix protein that acts as a major regulator of this signaling pathway, controlling FGF diffusion, and receptor interaction and shuttling. In particular, previous work showed that A1 overexpression results in more dopaminergic neurons in the olfactory bulb. Prompted by those intriguing results, in this study, we investigated the effects of A1 overexpression on different populations of catecholaminergic neurons in the central (CNS) and the peripheral nervous systems (PNS). We found that A1 overexpression increases the number of dopaminergic substantia nigra pars compacta (SNpc) neurons and alters the striosome/matrix organization of the striatum. Interestingly, these numerical and morphological changes in the nigrostriatal pathway of A1-mice did not confer an altered susceptibility to experimental MPTP-parkinsonism with respect to wild-type controls. Moreover, the study of the effects of A1 overexpression was extended to different dopaminergic tissues associated with the PNS, detecting a significant reduction in the number of dopaminergic chemosensitive carotid body glomus cells in A1-mice. Overall, our work shows that A1 regulates the development and survival of dopaminergic neurons in different nuclei of the mammalian nervous system.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/patología , Ratones Endogámicos C57BL , Mamíferos
6.
Adv Sci (Weinh) ; 9(29): e2200615, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988153

RESUMEN

Axon pathfinding is a key step in neural circuits formation. However, the transcriptional mechanisms regulating its progression remain poorly understood. The binary decision of crossing or avoiding the midline taken by some neuronal axons during development represents a robust model to investigate the mechanisms that control the selection of axonal trajectories. Here, to identify novel regulators of axon guidance, this work compares the transcriptome and chromatin occupancy profiles of two neuronal subpopulations, ipsilateral (iRGC) and contralateral retinal ganglion cells (cRGC), with similar functions but divergent axon trajectories. These analyses retrieved a number of genes encoding for proteins not previously implicated in axon pathfinding. In vivo functional experiments confirm the implication of some of these candidates in axonal navigation. Among the candidate genes, γ-synuclein is identified as essential for inducing midline crossing. Footprint and luciferase assays demonstrate that this small-sized protein is regulated by the transcription factor (TF) Pou4f1 in cRGCs. It is also shown that Lhx2/9 are specifically expressed in iRGCs and control a program that partially overlaps with that regulated by Zic2, previously described as essential for iRGC specification. Overall, the analyses identify dozens of new molecules potentially involved in axon guidance and reveal the regulatory logic behind the selection of axonal trajectories.


Asunto(s)
Orientación del Axón , gamma-Sinucleína , Cromatina/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , gamma-Sinucleína/metabolismo
7.
Cell Signal ; 98: 110417, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878754

RESUMEN

The X-linked form of Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia, is due to mutations in the ANOS1 gene that encodes for the extracellular matrix (ECM) protein anosmin 1. Prokineticins (PKs) exert their biological functions through the activation of the G protein-coupled receptors (GPCRs) prokineticin receptor 1 and 2 (PKR1, 2), and mutations in the PK2 and PKR2 genes are involved in the pathogenesis of KS. We have previously shown interaction between PKR2 and anosmin 1 in vitro. In the current report we present evidence of the modulation of PK2/PKR2 activity by anosmin 1, since this protein is able to enhance the activation of the ERK1/2 (extracellular signal-regulated kinase 1/2) pathway elicited by PK2 through PKR2. We also show that the N-terminal region of anosmin 1, capable of binding to the PK2-binding domain of PKR2, seems to be responsible for this effect. The whey acidic protein domain (WAP) is necessary for this modulatory activity, although data from GST pull-down (glutathione-S-transferase) and analysis of the N267K mutation in the fibronectin type III domain 1 (FnIII.1) suggest the cysteine-rich (CR) and the FnIII.1 domains could assist the WAP domain both in the binding to PKR2 and in the modulation of the activation of the receptor by PK2. Our data support the idea of a modulatory role of anosmin 1 in the biological effects controlled by the PK2/PKR2 system.


Asunto(s)
Síndrome de Kallmann , Proteínas del Tejido Nervioso , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Síndrome de Kallmann/genética , Síndrome de Kallmann/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
8.
J Neurochem ; 115(5): 1256-65, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20874775

RESUMEN

Anosmin-1, defective in Kallmann's syndrome, participates in the adhesion, migration and differentiation of different cell types in the CNS. Although not fully understood, the mechanisms of action of Anosmin-1 involve the interaction with different proteins, being the interaction with fibroblast growth factor receptor 1 (FGFR1) and the modulation of its signalling the best studied to date. Using glutathione-S-transferase pull-down assays we demonstrate that the FnIII.3 (Fibronectin-like type III) domain and the combination whey acidic protein-FnIII.1, but not each of them individually, interact with FGFR1. The interaction of the whey acidic protein-FnIII.1 domains is substantially reduced when the cysteine-rich region is present, suggesting a likely regulatory role for this domain. The introduction in FnIII.3 of any of the two missense mutations found in Kallmann's syndrome patients, E514K and F517L, abolished the interaction with FGFR1, what suggests an important role for these residues in the interaction. Interestingly, the chemoattraction of Anosmin-1 on rat neuronal precursors (NPs) via FGFR1 is retained by the N-terminal region of Anosmin-1 but not by FnIII.3 alone, and is lost in proteins carrying either one of the missense mutations, probably because of a highly reduced binding capacity to FGFR1. We also describe homophilic interaction Anosmin-1/Anosmin-1 via the FnIII repeats 1 and 4, and the interaction of FnIII.1 and FnIII.3 with Fibronectin and of FnIII.3 with Laminin.


Asunto(s)
Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/fisiología , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Animales Recién Nacidos , Células CHO , Ventriculitis Cerebral , Quimiotaxis/genética , Quimiotaxis/fisiología , Cricetinae , Cricetulus , Medios de Cultivo Condicionados/farmacología , Cisteína/genética , Cisteína/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas de la Matriz Extracelular/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Inmunoprecipitación/métodos , Laminina , Mutación/genética , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/fisiología , Estructura Terciaria de Proteína/fisiología , Pirroles/farmacología , Ratas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transfección/métodos
9.
J Clin Med ; 9(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498223

RESUMEN

Besides giving rise to oligodendrocytes (the only myelin-forming cell in the Central Nervous System (CNS) in physiological conditions), Oligodendrocyte Precursor Cells (OPCs) are responsible for spontaneous remyelination after a demyelinating lesion. They are present along the mouse and human CNS, both during development and in adulthood, yet how OPC physiological behavior is modified throughout life is not fully understood. The activity of adult human OPCs is still particularly unexplored. Significantly, most of the molecules involved in OPC-mediated remyelination are also involved in their development, a phenomenon that may be clinically relevant. In the present article, we have compared the intrinsic properties of OPCs isolated from the cerebral cortex of neonatal, postnatal and adult mice, as well as those recovered from neurosurgical adult human cerebral cortex tissue. By analyzing intact OPCs for the first time with 1H High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (1H HR-MAS NMR) spectroscopy, we show that these cells behave distinctly and that they have different metabolic patterns in function for their stage of maturity. Moreover, their response to Fibroblast Growth Gactor-2 (FGF-2) and anosmin-1 (two molecules that have known effects on OPC biology during development and that are overexpressed in individuals with Multiple Sclerosis (MS)) differs in relation to their developmental stage and in the function of the species. Our data reveal that the behavior of adult human and mouse OPCs differs in a very dynamic way that should be very relevant when testing drugs and for the proper design of effective pharmacological and/or cell therapies for MS.

10.
Anat Rec (Hoboken) ; 302(3): 428-445, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30306726

RESUMEN

The optic nerves (ONs), one of the 12 pairs of cranial nerves (Pair II), together with the olfactory and the cochlear nerves, are devoted to transmit sensory inputs. In particular, ONs convey visual information from the retina to the brain. In mammals, the ONs are bilateral structures that extend from the optic disc to the optic chiasm containing glial cells and retinal ganglion cells (RGCs) axons. RGCs are the only retinal neurons able to collect visual information and transmit it to the visual centers in the brain for its processing and integration with the rest of sensory inputs. During embryonic development, RGCs born in the retina extend their axons to exit the eye and follow a stereotypic path outlined by the transient expression of a wide set of guidance molecules. As the rest of central nervous system structures, the ONs are covered with myelin produced by oligodendrocytes and wrapped by the meninges. ON injuries or RGCs degenerative conditions may provoke partial or complete blindness because they are incapable of spontaneous regeneration. Here, we first review major advances on the current knowledge about the mechanisms underlying the formation of the ONs in mammals. Then, we discuss some of the human disorders and pathologies affecting the development and function of the ONs and finally we comment on the existing view about ON regeneration possibilities. Anat Rec, 302:428-445, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Axones/fisiología , Nervios Craneales/fisiología , Regeneración Nerviosa , Nervio Óptico/citología , Nervio Óptico/fisiología , Células Ganglionares de la Retina/fisiología , Animales , Nervios Craneales/citología , Humanos , Células Ganglionares de la Retina/citología
11.
Prog Retin Eye Res ; 68: 110-123, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30201383

RESUMEN

Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Cuerpo Ciliar/citología , Neurogénesis/fisiología , Degeneración Retiniana/terapia , Animales , Diferenciación Celular , Células Cultivadas , Cuerpo Ciliar/fisiología , Humanos , Ratones
12.
Curr Biol ; 29(7): 1149-1160.e4, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30905607

RESUMEN

The existence of axons extending from one retina to the other has been reported during perinatal development in different vertebrates. However, it has been thought that these axons are either a labeling artifact or misprojections. Here, we show unequivocally that a small subset of retinal ganglion cells (RGCs) project to the opposite retina and that the guidance receptor Unc5c, expressed in the retinal region where the retinal-retinal (R-R) RGCs are located, is necessary and sufficient to guide axons to the opposite retina. In addition, Netrin1, an Unc5c ligand, is expressed in the ventral diencephalon in a pattern that is consistent with impeding the growth of Unc5c-positive retinal axons into the brain. We also have generated a mathematical model to explore the formation of retinotopic maps in the presence and absence of a functional connection between both eyes. This model predicts that an R-R connection is required for the bilateral coordination of axonal refinement in species where refinement depends upon spontaneous retinal waves. Consistent with this idea, the retinal expression of Unc5c correlates with the existence and size of an R-R projection in different species and with the extent of axonal refinement in visual targets. These findings demonstrate that active guidance drives the formation of the R-R projection and suggest an important role for these projections in visual mapping to ensure congruent bilateral refinement.


Asunto(s)
Pollos/crecimiento & desarrollo , Hurones/crecimiento & desarrollo , Receptores de Netrina/genética , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Vías Visuales/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo , Animales , Ratones/crecimiento & desarrollo , Receptores de Netrina/metabolismo
13.
Curr Protoc Neurosci ; 79: 3.31.1-3.31.12, 2017 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-28398641

RESUMEN

Neuronal migration is a vital process needed for subsequent assembly and function of neural circuitry during embryonic development. The vast majority of neural progenitors are generated far from their final destination and need to migrate considerable distances to reach their specific cortical layer. Innovations in cell culture techniques and fluorescence microscopy now facilitate the direct visualization of cell movements during cortical development. Here, a detailed protocol to record and analyze a particular type of early migrating neurons, the Cajal Retzius Cells, during the development of the telencephalic vesicles in mammals is described. This method applied to other reporter mouse lines or to electroporated mouse embryos can be also used to analyze the migration of different types of moving neurons during cortical development. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Movimiento Celular/fisiología , Rastreo Celular/métodos , Corteza Cerebral/citología , Neuronas/citología , Imagen de Lapso de Tiempo/métodos , Animales , Diferenciación Celular/fisiología , Femenino , Ratones , Neurogénesis/fisiología , Telencéfalo/metabolismo , Imagen de Lapso de Tiempo/instrumentación
14.
Protein Pept Lett ; 23(7): 650-5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27184500

RESUMEN

Sexual maturation and olfactory bulb defects found in prokineticin 2 (Pk2) and prokineticin receptor 2 (Pkr2) mutant mice resembling the phenotypic characteristics of Kallmann syndrome (KS), gave rise to the question of whether these genes would have a role in KS pathogenesis. Later, mutations in both genes were identified in patients suffering from KS. The gene responsible for the Xlinked form of KS, ANOS1, encodes the ECM protein anosmin 1. Among other functions, anosmin 1 can regulate the activity of FGFR1, encoded by one of the genes involved in the autosomal transmission of KS. Therefore, it has been proposed that anosmin 1 could interact with PKR2 to modulate its activity. We present the first evidence supporting this hypothesis and report the interaction of full-length anosmin 1 with three extracellular domains of PKR2. A truncated anosmin 1 protein comprising the first three domains of the protein interacts with the second extracellular loop of PKR2, involved in PK2 binding. Finally, last three FnIII repeats of anosmin 1 also interacted with the PKR2 domains that interacted with full-length anosmin 1. Our data represent a molecular link between two of the genes involved in KS pathogenesis.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Síndrome de Kallmann/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células CHO , Clonación Molecular , Cricetulus , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Síndrome de Kallmann/genética , Síndrome de Kallmann/patología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
15.
Cell Rep ; 17(12): 3153-3164, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28009286

RESUMEN

The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. Because Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2-/- mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2+ cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity.


Asunto(s)
Ciclina D2/genética , Neurogénesis/genética , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Cilios/genética , Cilios/metabolismo , Humanos , Mamíferos , Ratones , Ratones Noqueados , Retina/embriología , Retina/crecimiento & desarrollo
16.
Brain Struct Funct ; 221(3): 1365-85, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25662897

RESUMEN

During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.


Asunto(s)
Encéfalo/embriología , Encéfalo/fisiología , Movimiento Celular , Proliferación Celular , Proteínas de la Matriz Extracelular/fisiología , Vaina de Mielina/fisiología , Proteínas del Tejido Nervioso/fisiología , Oligodendroglía/fisiología , Animales , Encéfalo/metabolismo , Células Cultivadas , Cuerpo Calloso/embriología , Cuerpo Calloso/metabolismo , Cuerpo Calloso/fisiología , Cuerpo Calloso/ultraestructura , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
17.
Brain Struct Funct ; 221(1): 239-60, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25300351

RESUMEN

New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/fisiología , Ventrículos Laterales/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neurogénesis , Bulbo Olfatorio/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , División Celular , Movimiento Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/genética , Humanos , Interneuronas/metabolismo , Interneuronas/fisiología , Ventrículos Laterales/metabolismo , Ventrículos Laterales/ultraestructura , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Vías Nerviosas/ultraestructura , Odorantes , Bulbo Olfatorio/metabolismo , Percepción Olfatoria/fisiología
18.
Adv Neurobiol ; 8: 273-92, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25300141

RESUMEN

Anosmin-1 is the glycoprotein encoded by the KAL1 gene and part of the extracellular matrix, which was first identified as defective in human Kallmann syndrome (KS, characterised by hypogonadotropic hypogonadism and anosmia); biochemically it is a cell adhesion protein. The meticulous biochemical dissection of the anosmin-1 domains has identified which domains are necessary for the protein to bind its different partners to display its biological effects. Research in the last decade has unravelled different roles of anosmin-1 during CNS development (axon pathfinding, axonal collateralisation, cell motility and migration), some of them intimately related with the cited KS but not only with this. More recently, anosmin-1 has been identified in other pathological scenarios both within (multiple sclerosis) and outside (cancer, atopic dermatitis) the CNS.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Síndrome de Kallmann/genética , Síndrome de Kallmann/metabolismo , Proteínas del Tejido Nervioso/genética , Neurología , Animales , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA