Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 606(7913): 351-357, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35545677

RESUMEN

Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.


Asunto(s)
Fototransducción , Rehabilitación Neurológica , Cambios Post Mortem , Retina , Animales , Autopsia , Muerte Celular/efectos de la radiación , Sistema Nervioso Central/efectos de la radiación , Humanos , Fototransducción/efectos de la radiación , Macaca , Ratones , Retina/metabolismo , Retina/efectos de la radiación , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443164

RESUMEN

The regulatory mechanisms of circadian rhythms have been studied primarily at the level of the transcription-translation feedback loops of protein-coding genes. Regulatory modules involving noncoding RNAs are less thoroughly understood. In particular, emerging evidence has revealed the important role of microRNAs (miRNAs) in maintaining the robustness of the circadian system. To identify miRNAs that have the potential to modulate circadian rhythms, we conducted a genome-wide miRNA screen using U2OS luciferase reporter cells. Among 989 miRNAs in the library, 120 changed the period length in a dose-dependent manner. We further validated the circadian regulatory function of an miRNA cluster, miR-183/96/182, both in vitro and in vivo. We found that all three members of this miRNA cluster can modulate circadian rhythms. Particularly, miR-96 directly targeted a core circadian clock gene, PER2. The knockout of the miR-183/96/182 cluster in mice showed tissue-specific effects on circadian parameters and altered circadian rhythms at the behavioral level. This study identified a large number of miRNAs, including the miR-183/96/182 cluster, as circadian modulators. We provide a resource for further understanding the role of miRNAs in the circadian network and highlight the importance of miRNAs as a genome-wide layer of circadian clock regulation.


Asunto(s)
Ritmo Circadiano/genética , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Proteínas Circadianas Period/metabolismo , Animales , Línea Celular Tumoral , Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Genómica , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Pulmón/metabolismo , Pulmón/efectos de la radiación , Ratones , MicroARNs/genética , Familia de Multigenes , Especificidad de Órganos , Proteínas Circadianas Period/genética , Retina/metabolismo , Retina/efectos de la radiación , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efectos de la radiación , Factores de Tiempo
3.
Nat Chem Biol ; 9(10): 630-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23974117

RESUMEN

Melanopsin, expressed in a subset of retinal ganglion cells, mediates behavioral adaptation to ambient light and other non-image-forming photic responses. This has raised the possibility that pharmacological manipulation of melanopsin can modulate several central nervous system responses, including photophobia, sleep, circadian rhythms and neuroendocrine function. Here we describe the identification of a potent synthetic melanopsin antagonist with in vivo activity. New sulfonamide compounds inhibiting melanopsin (opsinamides) compete with retinal binding to melanopsin and inhibit its function without affecting rod- and cone-mediated responses. In vivo administration of opsinamides to mice specifically and reversibly modified melanopsin-dependent light responses, including the pupillary light reflex and light aversion. The discovery of opsinamides raises the prospect of therapeutic control of the melanopsin phototransduction system to regulate light-dependent behavior and remediate pathological conditions.


Asunto(s)
Fototransducción/efectos de los fármacos , Opsinas de Bastones/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/farmacología , Humanos , Estructura Molecular , Opsinas de Bastones/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
4.
iScience ; 27(3): 109051, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38384840

RESUMEN

The hypothalamic suprachiasmatic nucleus (SCN) is composed of heterogenous populations of neurons that express signaling peptides such as vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) and regulate circadian rhythms in behavior and physiology. SCN neurons acquire functional and morphological specializations from waves of transcription factors (TFs) that are expressed during neurogenesis. However, the in vitro generation of SCN neurons has never been achieved. Here we supplemented a highly efficient neuronal conversion protocol with TFs that are expressed during SCN neurogenesis, namely Six3, Six6, Dlx2, and Lhx1. Neurons induced from mouse and human fibroblasts predominantly exhibited neuronal properties such as bipolar or multipolar morphologies, GABAergic neurons with expression of VIP. Our study reveals a critical contribution of these TFs to the development of vasoactive intestinal peptide (Vip) expressing neurons in the SCN, suggesting the regenerative potential of neuronal subtypes contained in the SCN for future SCN regeneration and in vitro disease remodeling.

5.
Front Neurol ; 12: 636330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841306

RESUMEN

Light profoundly affects our mental and physical health. In particular, light, when not delivered at the appropriate time, may have detrimental effects. In mammals, light is perceived not only by rods and cones but also by a subset of retinal ganglion cells that express the photopigment melanopsin that renders them intrinsically photosensitive (ipRGCs). ipRGCs participate in contrast detection and play critical roles in non-image-forming vision, a set of light responses that include circadian entrainment, pupillary light reflex (PLR), and the modulation of sleep/alertness, and mood. ipRGCs are also found in the human retina, and their response to light has been characterized indirectly through the suppression of nocturnal melatonin and PLR. However, until recently, human ipRGCs had rarely been investigated directly. This gap is progressively being filled as, over the last years, an increasing number of studies provided descriptions of their morphology, responses to light, and gene expression. Here, I review the progress in our knowledge of human ipRGCs, in particular, the different morphological and functional subtypes described so far and how they match the murine subtypes. I also highlight questions that remain to be addressed. Investigating ipRGCs is critical as these few cells play a major role in our well-being. Additionally, as ipRGCs display increased vulnerability or resilience to certain disorders compared to conventional RGCs, a deeper knowledge of their function could help identify therapeutic approaches or develop diagnostic tools. Overall, a better understanding of how light is perceived by the human eye will help deliver precise light usage recommendations and implement light-based therapeutic interventions to improve cognitive performance, mood, and life quality.

6.
Science ; 366(6470): 1251-1255, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31806815

RESUMEN

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a subset of cells that participate in image-forming and non-image-forming visual responses. Although both functional and morphological subtypes of ipRGCs have been described in rodents, parallel functional subtypes have not been identified in primate or human retinas. In this study, we used a human organ donor preparation method to measure human ipRGCs' photoresponses. We discovered three functional ipRGC subtypes with distinct sensitivities and responses to light. The response of one ipRGC subtype appeared to depend on exogenous chromophore supply, and this response is conserved in both human and mouse retinas. Rods and cones also provided input to ipRGCs; however, each subtype integrated outer retina light signals in a distinct fashion.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Células Ganglionares de la Retina/fisiología , Animales , Humanos , Luz , Ratones , Estimulación Luminosa , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología
7.
Cell Rep ; 29(3): 628-644.e6, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618632

RESUMEN

The form and synaptic fine structure of melanopsin-expressing retinal ganglion cells, also called intrinsically photosensitive retinal ganglion cells (ipRGCs), were determined using a new membrane-targeted version of a genetic probe for correlated light and electron microscopy (CLEM). ipRGCs project to multiple brain regions, and because the method labels the entire neuron, it was possible to analyze nerve terminals in multiple retinorecipient brain regions, including the suprachiasmatic nucleus (SCN), olivary pretectal nucleus (OPN), and subregions of the lateral geniculate. Although ipRGCs provide the only direct retinal input to the OPN and SCN, ipRGC terminal arbors and boutons were found to be remarkably different in each target region. A network of dendro-dendritic chemical synapses (DDCSs) was also revealed in the SCN, with ipRGC axon terminals preferentially synapsing on the DDCS-linked cells. The methods developed to enable this analysis should propel other CLEM studies of long-distance brain circuits at high resolution.


Asunto(s)
Encéfalo/metabolismo , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Sinapsis/metabolismo , Animales , Axones/fisiología , Encéfalo/patología , Ritmo Circadiano/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica , Área Pretectal/metabolismo , Área Pretectal/patología , Células Ganglionares de la Retina/patología , Opsinas de Bastones/deficiencia , Opsinas de Bastones/genética , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/patología
8.
J Biol Rhythms ; 22(5): 411-24, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17876062

RESUMEN

In mammals, nonvisual responses to light have been shown to involve intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin and that are modulated by input from both rods and cones. Recent in vitro evidence suggests that melanopsin possesses dual photosensory and photoisomerase functions, previously thought to be a unique feature of invertebrate rhabdomeric photopigments. In cultured cells that normally do not respond to light, heterologous expression of mammalian melanopsin confers light sensitivity that can be restored by prior stimulation with appropriate wavelengths. Using three different physiological and behavioral assays, we show that this in vitro property translates to in vivo, melanopsin-dependent nonvisual responses. We find that prestimulation with long-wavelength light not only restores but enhances single-unit responses of SCN neurons to 480-nm light, whereas the long-wavelength stimulus alone fails to elicit any response. Recordings in Opn4-/- mice confirm that melanopsin provides the main photosensory input to the SCN, and furthermore, demonstrate that melanopsin is required for response enhancement, because this capacity is abolished in the knockout mouse. The efficiency of the light-enhancement effect depends on wavelength, irradiance, and duration. Prior long-wavelength light exposure also enhances short-wavelength-induced phase shifts of locomotor activity and pupillary constriction, consistent with the expression of a photoisomerase-like function in nonvisual responses to light.


Asunto(s)
Luz , Opsinas de Bastones/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Ritmo Circadiano/fisiología , Masculino , Ratones , Neuronas/fisiología , Reflejo Pupilar/fisiología , Factores de Tiempo
9.
Cell Rep ; 25(9): 2497-2509.e4, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485815

RESUMEN

Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are indispensable for non-image-forming visual responses that sustain under prolonged illumination. For sustained signaling of ipRGCs, the melanopsin photopigment must continuously regenerate. The underlying mechanism is unknown. We discovered that a cluster of Ser/Thr sites within the C-terminal region of mammalian melanopsin is phosphorylated after a light pulse. This forms a binding site for ß-arrestin 1 (ßARR1) and ß-arrestin 2. ß-arrestin 2 primarily regulates the deactivation of melanopsin; accordingly, ßαrr2-/- mice exhibit prolonged ipRGC responses after cessation of a light pulse. ß-arrestin 1 primes melanopsin for regeneration. Therefore, ßαrr1-/- ipRGCs become desensitized after repeated or prolonged photostimulation. The lack of either ß-arrestin attenuates ipRGC response under prolonged illumination, suggesting that ß-arrestin 2-mediated deactivation and ß-arrestin 1-dependent regeneration of melanopsin function in sequence. In conclusion, we discovered a molecular mechanism by which ß-arrestins regulate different aspects of melanopsin photoresponses and allow ipRGC-sustained responses under prolonged illumination.


Asunto(s)
Luz , Regeneración/efectos de la radiación , Opsinas de Bastones/metabolismo , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismo , Adaptación Ocular/efectos de la radiación , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Conducta Animal , Células CHO , Cricetinae , Cricetulus , Humanos , Fototransducción , Ratones , Modelos Biológicos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Opsinas de Bastones/química
10.
Cell Metab ; 27(2): 404-418.e7, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29358041

RESUMEN

The mechanisms by which feeding and fasting drive rhythmic gene expression for physiological adaptation to daily rhythm in nutrient availability are not well understood. Here we show that, upon feeding, the RNA-binding protein NONO accumulates within speckle-like structures in liver cell nuclei. Combining RNA-immunoprecipitation and sequencing (RIP-seq), we find that an increased number of RNAs are bound by NONO after feeding. We further show that NONO binds and regulates the rhythmicity of genes involved in nutrient metabolism post-transcriptionally. Finally, we show that disrupted rhythmicity of NONO target genes has profound metabolic impact. Indeed, NONO-deficient mice exhibit impaired glucose tolerance and lower hepatic glycogen and lipids. Accordingly, these mice shift from glucose storage to fat oxidation, and therefore remain lean throughout adulthood. In conclusion, our study demonstrates that NONO post-transcriptionally coordinates circadian mRNA expression of metabolic genes with the feeding/fasting cycle, thereby playing a critical role in energy homeostasis.


Asunto(s)
Adaptación Fisiológica , Proteínas de Unión al ADN/metabolismo , Conducta Alimentaria , Hígado/metabolismo , Proteínas de Unión al ARN/metabolismo , Adiposidad/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Hepatocitos/metabolismo , Homeostasis/efectos de los fármacos , Intrones/genética , Ratones Endogámicos C57BL , Modelos Biológicos , Unión Proteica , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Science ; 359(6381)2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29439024

RESUMEN

Diurnal gene expression patterns underlie time-of-the-day-specific functional specialization of tissues. However, available circadian gene expression atlases of a few organs are largely from nocturnal vertebrates. We report the diurnal transcriptome of 64 tissues, including 22 brain regions, sampled every 2 hours over 24 hours, from the primate Papio anubis (baboon). Genomic transcription was highly rhythmic, with up to 81.7% of protein-coding genes showing daily rhythms in expression. In addition to tissue-specific gene expression, the rhythmic transcriptome imparts another layer of functional specialization. Most ubiquitously expressed genes that participate in essential cellular functions exhibit rhythmic expression in a tissue-specific manner. The peak phases of rhythmic gene expression clustered around dawn and dusk, with a "quiescent period" during early night. Our findings also unveil a different temporal organization of central and peripheral tissues between diurnal and nocturnal animals.


Asunto(s)
Encéfalo/fisiología , Relojes Circadianos/genética , Ritmo Circadiano/genética , Papio anubis/genética , Papio anubis/fisiología , Transcriptoma , Animales , Encéfalo/metabolismo , Genómica , Masculino
12.
PLoS One ; 11(12): e0168651, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27992553

RESUMEN

Light is a powerful entrainer of circadian clocks in almost all eukaryotic organisms promoting synchronization of internal circadian rhythms with external environmental light-dark (LD) cycles. In mammals, the circadian system is organized in a hierarchical manner, in which a central pacemaker in the suprachiasmatic nucleus (SCN) synchronizes oscillators in peripheral tissues. Recent evidence demonstrates that photoentrainment of the SCN proceeds via signaling from a subpopulation of retinal ganglion cells (RGCs) which are melanopsin-expressing and intrinsically photosensitive (ipRGCs). However, it is still unclear whether photoentrainment of peripheral clocks is mediated exclusively by the ipRGC system or if signaling from RGCs that do not express melanopsin also plays a role. Here we have used genetic "silencing" of ipRGC neurotransmission in mice to investigate whether this photoreceptive system is obligatory for the photoentrainment of peripheral circadian clocks. Genetic silencing of ipRGC neurotransmission in mice was achieved by expression of tetanus toxin light chain in melanopsin-expressing cells (Opn4::TeNT mouse line). Rhythms of the clock gene Period 2 in various peripheral tissues were measured by crossbreeding Opn4::TeNT mice with PER2 luciferase knock-in mice (mPER2Luc). We found that in Opn4::TeNT mice the pupillary light reflex, light modulation of activity, and circadian photoentrainment of locomotor activity were severely impaired. Furthermore, ex vivo cultures from Opn4::TeNT, mPER2Luc mice of the adrenal gland, cornea, lung, liver, pituitary and spleen exhibited robust circadian rhythms of PER2::LUC bioluminescence. However, their peak bioluminescence rhythms were not aligned to the projected LD cycles indicating their lack of photic entrainment in vivo. Finally, we found that the circadian rhythm in adrenal corticosterone in Opn4::TeNT mice, as monitored by in vivo subcutaneous microdialysis, was desynchronized from environmental LD cycles. Our findings reveal a non-redundant role of ipRGCs for photic entrainment of peripheral tissues, highlighting the importance of this photoreceptive system for the organismal adaptation to daily environmental LD cycles.


Asunto(s)
Relojes Circadianos , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/genética , Toxina Tetánica/metabolismo , Animales , Ritmo Circadiano , Corticosterona/metabolismo , Ratones , Proteínas Circadianas Period/metabolismo , Opsinas de Bastones/metabolismo , Núcleo Supraquiasmático/metabolismo
13.
Neuron ; 90(5): 1016-27, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27181062

RESUMEN

Melanopsin photopigment expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) plays a crucial role in the adaptation of mammals to their ambient light environment through both image-forming and non-image-forming visual responses. The ipRGCs are structurally and functionally distinct from classical rod/cone photoreceptors and have unique properties, including single-photon response, long response latency, photon integration over time, and slow deactivation. We discovered that amino acid sequence features of melanopsin protein contribute to the functional properties of the ipRGCs. Phosphorylation of a cluster of Ser/Thr residues in the C-terminal cytoplasmic region of melanopsin contributes to deactivation, which in turn determines response latency and threshold sensitivity of the ipRGCs. The poorly conserved region distal to the phosphorylation cluster inhibits phosphorylation's functional role, thereby constituting a unique delayed deactivation mechanism. Concerted action of both regions sustains responses to dim light, allows for the integration of light over time, and results in precise signal duration.


Asunto(s)
Fototransducción/fisiología , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/fisiología , Animales , Células Cultivadas , Ritmo Circadiano/fisiología , Locomoción/fisiología , Ratones , Mutación , Fosforilación , Estimulación Luminosa , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Xenopus
15.
Elife ; 3: e03357, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25035422

RESUMEN

The robustness and limited plasticity of the master circadian clock in the suprachiasmatic nucleus (SCN) is attributed to strong intercellular communication among its constituent neurons. However, factors that specify this characteristic feature of the SCN are unknown. Here, we identified Lhx1 as a regulator of SCN coupling. A phase-shifting light pulse causes acute reduction in Lhx1 expression and of its target genes that participate in SCN coupling. Mice lacking Lhx1 in the SCN have intact circadian oscillators, but reduced levels of coupling factors. Consequently, the mice rapidly phase shift under a jet lag paradigm and their behavior rhythms gradually deteriorate under constant condition. Ex vivo recordings of the SCN from these mice showed rapid desynchronization of unit oscillators. Therefore, by regulating expression of genes mediating intercellular communication, Lhx1 imparts synchrony among SCN neurons and ensures consolidated rhythms of activity and rest that is resistant to photic noise.


Asunto(s)
Relojes Circadianos/genética , Síndrome Jet Lag/genética , Proteínas con Homeodominio LIM/genética , Neuronas/metabolismo , Proteínas Circadianas Period/genética , Núcleo Supraquiasmático/metabolismo , Factores de Transcripción/genética , Animales , Comunicación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Síndrome Jet Lag/metabolismo , Síndrome Jet Lag/patología , Proteínas con Homeodominio LIM/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/patología , Proteínas Circadianas Period/metabolismo , Fotoperiodo , Transducción de Señal , Núcleo Supraquiasmático/patología , Factores de Transcripción/metabolismo
16.
Neuron ; 75(4): 546-8, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22920246

RESUMEN

Temporal adaptation of behaviors is of crucial importance for every organism. In this issue of Neuron, while elegantly establishing the developmental program of the subcortical visual shell (SVS), a group of retinorecipient nuclei, Delogu et al. (2012) also implicate one of its structures, the IGL, as a potential important player in the regulation of daily activity pattern.

17.
J Biol Rhythms ; 27(3): 257-64, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22653894

RESUMEN

Many nonvisual functions are regulated by light through a photoreceptive system involving melanopsin-expressing retinal ganglion cells that are maximally sensitive to blue light. Several studies have suggested that the ability of light to modulate circadian entrainment and to induce acute effects on melatonin secretion, subjective alertness, and gene expression decreases during aging, particularly for blue light. This could contribute to the documented changes in sleep and circadian regulatory processes with aging. However, age-related modification in the impact of light on steady-state pupil constriction, which regulates the amount of light reaching the retina, is not demonstrated. We measured pupil size in 16 young (22.8±4 years) and 14 older (61±4.4 years) healthy subjects during 45-second exposures to blue (480 nm) and green (550 nm) monochromatic lights at low (7×10(12) photons/cm2/s), medium (3×10(13) photons/cm2/s), and high (10(14) photons/cm2/s) irradiance levels. Results showed that young subjects had consistently larger pupils than older subjects for dark adaptation and during all light exposures. Steady-state pupil constriction was greater under blue than green light exposure in both age groups and increased with increasing irradiance. Surprisingly, when expressed in relation to baseline pupil size, no significant age-related differences were observed in pupil constriction. The observed reduction in pupil size in older individuals, both in darkness and during light exposure, may reduce retinal illumination and consequently affect nonvisual responses to light. The absence of a significant difference between age groups for relative steady-state pupil constriction suggests that other factors such as tonic, sympathetic control of pupil dilation, rather than light sensitivity per se, account for the observed age difference in pupil size regulation. Compared to other nonvisual functions, the light sensitivity of steady-state pupil constriction appears to remain relatively intact and is not profoundly altered by age.


Asunto(s)
Luz , Pupila/fisiología , Adulto , Factores de Edad , Anciano , Envejecimiento , Ritmo Circadiano/fisiología , Femenino , Humanos , Masculino , Melatonina/metabolismo , Persona de Mediana Edad , Estimulación Luminosa , Opsinas de Bastones/metabolismo , Visión Ocular
18.
PLoS One ; 4(6): e5991, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-19551136

RESUMEN

In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.


Asunto(s)
Córnea/efectos de los fármacos , Retina/metabolismo , Opsinas de Bastones/metabolismo , Opsinas de Bastones/fisiología , Tropicamida/farmacología , Adulto , Femenino , Humanos , Cinética , Luz , Fototransducción , Masculino , Pigmentación , Pupila/fisiología , Sensibilidad y Especificidad , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA