Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pathogens ; 12(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37242329

RESUMEN

Africa has a high level of genetic diversity of rotavirus strains, which is suggested to be a possible reason contributing to the suboptimal effectiveness of rotavirus vaccines in this region. One strain that contributes to this rotavirus diversity in Africa is the G8P[4]. This study aimed to elucidate the entire genome and evolution of Rwandan G8P[4] strains. Illumina sequencing was performed for twenty-one Rwandan G8P[4] rotavirus strains. Twenty of the Rwandan G8P[4] strains had a pure DS-1-like genotype constellation, and one strain had a reassortant genotype constellation. Notable radical amino acid differences were observed at the neutralization sites when compared with cognate regions in vaccine strains potentially playing a role in neutralization escape. Phylogenetic analysis revealed that the closest relationship was with East African human group A rotavirus (RVA) strains for five of the genome segments. Two genome sequences of the NSP4 genome segment were closely related to bovine members of the DS-1-like family. Fourteen VP1 and eleven VP3 sequences had the closest relationships with the RotaTeq™ vaccine WC3 bovine genes. These findings suggest that the evolution of VP1 and VP3 might have resulted from reassortment events with RotaTeq™ vaccine WC3 bovine genes. The close phylogenetic relationship with East African G8P[4] strains from Kenya and Uganda suggests co-circulation in these countries. These findings highlight the need for continued whole-genomic surveillance to elucidate the evolution of G8P[4] strains, especially after the introduction of rotavirus vaccination.

2.
Viruses ; 15(12)2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38140562

RESUMEN

Although the introduction of rotavirus vaccines has substantially contributed to the reduction in rotavirus morbidity and mortality, concerns persist about the re-emergence of variant strains that might alter vaccine effectiveness in the long term. The G9 strains re-emerged in Africa during the mid-1990s and have more recently become predominant in some countries, such as Ghana and Zambia. In Rwanda, during the 2011 to 2015 routine surveillance period, G9P[8] persisted during both the pre- and post-vaccine periods. The pre-vaccination cohort was based on the surveillance period of 2011 to 2012, and the post-vaccination cohort was based on the period of 2013 to 2015, excluding 2014. The RotaTeq® vaccine that was first introduced in Rwanda in 2012 is genotypically heterologous to Viral Protein 7 (VP7) G9. This study elucidated the whole genome of Rwandan G9P[8] rotavirus strains pre- and post-RotaTeq® vaccine introduction. Fecal samples from Rwandan children under the age of five years (pre-vaccine n = 23; post-vaccine n = 7), conventionally genotyped and identified as G9P[8], were included. Whole-genome sequencing was then performed using the Illumina® MiSeq platform. Phylogenetic analysis and pair-wise sequence analysis were performed using MEGA6 software. Distinct clustering of three post-vaccination study strains was observed in all 11 gene segments, compared to the other Rwandan G9P[8] study strains. Specific amino acid differences were identified across the gene segments of these three 2015 post-vaccine strains. Important amino acid differences were identified at position N242S in the VP7 genome segment of the three post-vaccine G9 strains compared to the other G9 strains. This substitution occurs at a neutralization epitope site and may slightly affect protein interaction at that position. These findings indicate that the Rwandan G9P[8] strains revealed a distinct sub-clustering pattern among post-vaccination study strains circulating in Rwanda, with changes at neutralization epitopes, which may play a role in neutralization escape from vaccine candidates. This emphasizes the need for continuous whole-genome surveillance to better understand the evolution and epidemiology of the G9P[8] strains post-vaccination.


Asunto(s)
Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Niño , Humanos , Preescolar , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Rwanda/epidemiología , Filogenia , Vacunación , Genotipo , Ghana/epidemiología , Genómica , Análisis por Conglomerados , Aminoácidos/genética , Antígenos Virales/genética , Proteínas de la Cápside/genética
3.
Infect Drug Resist ; 14: 699-707, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33654414

RESUMEN

BACKGROUND: Worldwide, bacterial bloodstream infections (BSIs) constitute an important cause of morbidity and mortality in clinical settings. Due to the limited laboratory facilities in sub-Saharan Africa, poor diagnosis of BSIs results in poor clinical outcomes and leads to a risk of antimicrobial resistance. The present work was carried out to describe the microbiological features of BSIs using the data collected from Centre Hospitalier Universitaire de Kigali (CHUK). METHODS: A retrospective study was carried out at CHUK. The blood culture results of 2,910 cases - from adults, children and infants - were reviewed in the Microbiology service from October 2017 to October 2018. The following variables were considered: age, gender, admitting department, blood culture results, and antimicrobials sensitivity test results. Data were entered and analyzed using Microsoft Excel 2013. RESULTS: Twelve percent (341/2,910) of blood culture results reviewed were positive with 108 (31.7%) Gram positive bacteria and 233 (68.3%) Gram negative bacteria. The most prevalent pathogens were Klebsiella pneumoniae 108 (31.7%) and Staphylococcus aureus 100 (29.3%). This study revealed a high resistance to commonly prescribed antibiotics such as penicillin, trimethoprim sulfamethoxazole, and Ampicillin with 91.8, 83.3, and 81.8% of resistance, respectively. However, bacteria were sensitive to imipenem and vancomycin with 98.1 and 94.3% of sensitivity, respectively. The pediatrics and neonatology departments showed a high number of positive culture with 97/341 (28.4%), and 93/341 (27%) respectively. The overall prevalence of multidrug resistance was 77.1%. CONCLUSION: The prevalence of bacterial pathogens in BSIs was found to be high. The antibiotic resistance to the commonly used antibiotics was high. Appropriate treatment of BSIs should be based on the current knowledge of bacterial resistance pattern. This study will help in formulating management of diagnostic guidelines and antibiotic policy.

4.
Sci Rep ; 10(1): 13460, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778711

RESUMEN

Rwanda was the first low-income African country to introduce RotaTeq vaccine into its Expanded Programme on Immunization in May 2012. To gain insights into the overall genetic make-up and evolution of Rwandan G1P[8] strains pre- and post-vaccine introduction, rotavirus positive fecal samples collected between 2011 and 2016 from children under the age of 5 years as part of ongoing surveillance were genotyped with conventional RT-PCR based methods and whole genome sequenced using the Illumina MiSeq platform. From a pool of samples sequenced (n = 158), 36 were identified as G1P[8] strains (10 pre-vaccine and 26 post-vaccine), of which 35 exhibited a typical Wa-like genome constellation. However, one post vaccine strain, RVA/Human-wt/RWA/UFS-NGS:MRC-DPRU442/2012/G1P[8], exhibited a RotaTeq vaccine strain constellation of G1-P[8]-I2-R2-C2-M2-A3-N2-T6-E2-H3, with most of the gene segments having a close relationship with a vaccine derived reassortant strain, previously reported in USA in 2010 and Australia in 2012. The study strains segregated into two lineages, each containing a paraphyletic pre- and post-vaccine introduction sub-lineages. In addition, the study strains demonstrated close relationship amongst each other when compared with globally selected group A rotavirus (RVA) G1P[8] reference strains. For VP7 neutralization epitopes, amino acid substitutions observed at positions T91A/V, S195D and M217T in relation to the RotaTeq vaccine were radical in nature and resulted in a change in polarity from a polar to non-polar molecule, while for the VP4, amino acid differences at position D195G was radical in nature and resulted in a change in polarity from a polar to non-polar molecule. The polarity change at position T91A/V of the neutralizing antigens might play a role in generating vaccine-escape mutants, while substitutions at positions S195D and M217T may be due to natural fluctuation of the RVA. Surveillance of RVA at whole genome level will enhance further assessment of vaccine impact on circulating strains, the frequency of reassortment events under natural conditions and epidemiological fitness generated by such events.


Asunto(s)
Biología Computacional/métodos , Infecciones por Rotavirus/genética , Rotavirus/genética , Proteínas de la Cápside/genética , Preescolar , Simulación por Computador , Diarrea/epidemiología , Heces/microbiología , Femenino , Variación Genética/genética , Genoma Viral/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Filogenia , ARN Viral/genética , Infecciones por Rotavirus/virología , Rwanda/epidemiología , Análisis de Secuencia de ADN/métodos , Vacunación/métodos , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA