Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 21(20): 8164-73, 2001 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-11588189

RESUMEN

The ability to selectively lesion mouse basal forebrain cholinergic neurons would permit experimental examination of interactions between cholinergic functional loss and genetic factors associated with neurodegenerative disease. We developed a selective toxin for mouse basal forebrain cholinergic neurons by conjugating saporin (SAP), a ribosome-inactivating protein, to a rat monoclonal antibody against the mouse p75 nerve growth factor (NGF) receptor (anti-murine-p75). The toxin proved effective and selective in vitro and in vivo. Intracerebroventricular injections of anti-murine-p75-SAP produced a dose-dependent loss of choline acetyltransferase (ChAT) activity in the hippocampus and neocortex without affecting glutamic acid decarboxylase (GAD) activity. Hippocampal ChAT depletions induced by the immunotoxin were consistently greater than neocortical depletions. Immunohistochemical analysis revealed a dose-dependent loss of cholinergic neurons in the medial septum (MS) but no marked loss of cholinergic neurons in the nucleus basalis magnocellularis after intracerebroventricular injection of the toxin. No loss of noncholinergic neurons in the MS was apparent, nor could we detect loss of noncholinergic cerebellar Purkinje cells, which also express p75. Behavioral analysis suggested a spatial learning deficit in anti-murine-p75-SAP-lesioned mice, based on a correlation between a loss of hippocampal ChAT activity and impairment in Morris water maze performance. Our results indicate that we have developed a specific cholinergic immunotoxin for mice. They also suggest possible functional differences in the mouse and rat cholinergic systems, which may be of particular significance in attempts to develop animal models of human diseases, such as Alzheimer's disease, which are associated with impaired cholinergic function.


Asunto(s)
Conducta Animal/efectos de los fármacos , Inmunotoxinas/administración & dosificación , N-Glicosil Hidrolasas , Neuronas/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Receptor de Factor de Crecimiento Nervioso/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Conducta Animal/fisiología , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colina O-Acetiltransferasa/deficiencia , Colina O-Acetiltransferasa/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Glutamato Descarboxilasa/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmunohistoquímica , Inmunotoxinas/química , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/efectos de los fármacos , Neocórtex/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Plantas/química , Prosencéfalo/citología , Prosencéfalo/metabolismo , Receptor de Factor de Crecimiento Nervioso/biosíntesis , Proteínas Inactivadoras de Ribosomas Tipo 1 , Saporinas
2.
Hum Gene Ther ; 11(17): 2341-52, 2000 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-11096439

RESUMEN

Spatial learning requires the integrity of the nerve growth factor (NGF)-responsive septohippocampal pathway. Loss of a single NGF allele at the mouse NGF locus (heterozygous null, ngf(+/-)) reduces septohippocampal NGF levels and NGF-regulated cholinergic neurotransmitter enzymes and results in spatial learning deficits in adult animals. A herpes simplex virus (HSV) amplicon vector was utilized to locally deliver NGF to the hippocampus of mice heterozygous and wild type (ngf(+/+)) at the NGF gene locus. NGF gene transfer produced transient increases in NGF protein levels and choline acetyltransferase activity in both ngf(+/-) and ngf(+/+) mice. However, spatial learning capability was improved only in ngf(+/-) mice. In aggregate, these findings suggest that amplicon-directed expression of NGF in subjects with baseline septohippocampal dysfunction can correct spatial learning deficits.


Asunto(s)
Vectores Genéticos/genética , Hipocampo/fisiología , Aprendizaje/fisiología , Factor de Crecimiento Nervioso/genética , Animales , Colina O-Acetiltransferasa/metabolismo , Cricetinae , Expresión Génica , Técnicas de Transferencia de Gen , Ratones , Ratones Mutantes , Factor de Crecimiento Nervioso/metabolismo , Simplexvirus/genética
3.
Neurobiol Learn Mem ; 74(3): 241-58, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11031130

RESUMEN

Molecular genetic manipulation of the mouse offers the possibility of elucidating the function of individual gene products in neural systems underlying learning and memory. Many extant learning paradigms for mice rely on negative reinforcement, involve simple problems that are relatively rapidly acquired and thus preclude time-course assessment, and may impose the need to undertake additional experiments to determine the extent to which noncognitive behaviors influence the measures of learning. To overcome such limitations, a multiple schedule of repeated acquisition and performance was behaviorally engineered to assess learning vs rote performance within-behavioral test session and within-subject utilizing an apparatus modified from the rat (the repeated acquisition and performance chamber; RAPC). The multiple schedule required mice to learn a new sequence of door openings leading to saccharin availability in the learning component during each session, while the sequence of door openings for the performance component remained constant across sessions. The learning and performance components alternated over the course of each test session, with different auditory stimuli signaling which component was currently in effect. To validate this paradigm, learning vs performance was evaluated in two inbred strains of mice: C57BL/6J and 129/SvJ. The hippocampal dependence of this measure was examined in lesioned C57BL/6J mice. Both strains exhibited longer latencies and higher errors in the learning compared to the performance component and evidenced declines in both measures across the trials of each session, consistent with an acquisition phenomenon. These same measures showed little or no evidence of change in the performance component. Whereas three trials per session were utilized with C57BL/65 mice in each component, behavior of 129/SvJ mice could only be sustained for two trials per component per session, demonstrating differences in testing capabilities between these two strains under these experimental conditions and thus precluding the ability to make systematic strain comparisons of learning capabilities. Hippocampal lesions in C57BL/6J mice resulted in substantially longer latencies and increased errors in the learning but not the performance component, demonstrating the importance of this region to spatial learning as measured in the RAPC. In aggregate, this positive reinforcement-based operant paradigm to evaluate murine spatial learning detects strain differences and hippocampal dependence and permits explicit differentiation of the impact of noncognitive contributions to learning measures on a within-subject, within-session basis.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Conducta Espacial/fisiología , Animales , Conducta Animal/fisiología , Habituación Psicofisiológica/fisiología , Hipocampo/fisiología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Refuerzo en Psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA