Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2315481121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38870060

RESUMEN

Intracellular bacterial pathogens divert multiple cellular pathways to establish their niche and persist inside their host. Coxiella burnetii, the causative agent of Q fever, secretes bacterial effector proteins via its Type 4 secretion system to generate a Coxiella-containing vacuole (CCV). Manipulation of lipid and protein trafficking by these effectors is essential for bacterial replication and virulence. Here, we have characterized the lipid composition of CCVs and found that the effector Vice interacts with phosphoinositides and membranes enriched in phosphatidylserine and lysobisphosphatidic acid. Remarkably, eukaryotic cells ectopically expressing Vice present compartments that resemble early CCVs in both morphology and composition. We found that the biogenesis of these compartments relies on the double function of Vice. The effector protein initially localizes at the plasma membrane of eukaryotic cells where it triggers the internalization of large vacuoles by macropinocytosis. Then, Vice stabilizes these compartments by perturbing the ESCRT machinery. Collectively, our results reveal that Vice is an essential C. burnetii effector protein capable of hijacking two major cellular pathways to shape the bacterial replicative niche.


Asunto(s)
Proteínas Bacterianas , Coxiella burnetii , Complejos de Clasificación Endosomal Requeridos para el Transporte , Pinocitosis , Vacuolas , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Bacterianas/metabolismo , Coxiella burnetii/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología , Humanos , Células HeLa , Membrana Celular/metabolismo , Animales , Fosfatidilinositoles/metabolismo
2.
J Biol Chem ; 299(11): 105323, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805138

RESUMEN

Human respiratory syncytial virus (RSV) is the leading cause of infantile bronchiolitis in the developed world and of childhood deaths in resource-poor settings. The elderly and the immunosuppressed are also affected. It is a major unmet target for vaccines and antiviral drugs. RSV assembles and buds from the host cell plasma membrane by forming infectious viral particles which are mostly filamentous. A key interaction during RSV assembly is the interaction of the matrix (M) protein with cell plasma membrane lipids forming a layer at assembly sites. Although the structure of RSV M protein dimer is known, it is unclear how the viral M proteins interact with cell membrane lipids, and with which one, to promote viral assembly. Here, we demonstrate that M proteins are able to cluster at the plasma membrane by selectively binding with phosphatidylserine (PS). Our in vitro studies suggest that M binds PS lipid as a dimer and upon M oligomerization, PS clustering is observed. In contrast, the presence of other negatively charged lipids like PI(4, 5)P2 does not enhance M binding beyond control zwitterionic lipids, while cholesterol negatively affects M interaction with membrane lipids. Moreover, we show that the initial binding of the RSV M protein with PS lipids is independent of the cytoplasmic tail of the fusion (F) glycoprotein (FCT). Here, we highlight that M binding on membranes occurs directly through PS lipids, this interaction is electrostatic in nature, and M oligomerization generates PS clusters.


Asunto(s)
Virus Sincitial Respiratorio Humano , Humanos , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Virales de Fusión/metabolismo , Virión/metabolismo , Ensamble de Virus , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Línea Celular Tumoral
3.
Small ; 20(16): e2304564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009767

RESUMEN

Unknown particle screening-including virus and nanoparticles-are keys in medicine, industry, and also in water pollutant determination. Here, RYtov MIcroscopy for Nanoparticles Identification (RYMINI) is introduced, a staining-free, non-invasive, and non-destructive optical approach that is merging holographic label-free 3D tracking with high-sensitivity quantitative phase imaging into a compact optical setup. Dedicated to the identification and then characterization of single nano-object in solution, it is compatible with highly demanding environments, such as level 3 biological laboratories, with high resilience to external source of mechanical and optical noise. Metrological characterization is performed at the level of each single particle on both absorbing and transparent particles as well as on immature and infectious HIV, SARS-CoV-2 and extracellular vesicles in solution. The capability of RYMINI to determine the nature, concentration, size, complex refractive index and mass of each single particle without knowledge or model of the particles' response is demonstrated. The system surpasses 90% accuracy for automatic identification between dielectric/metallic/biological nanoparticles and ≈80% for intraclass chemical determination of metallic and dielectric. It falls down to 50-70% for type determination inside the biological nanoparticle's class.


Asunto(s)
Holografía , Nanopartículas del Metal , Nanopartículas , Virus , Nanopartículas/química , Microscopía/métodos
4.
Biophys J ; 122(11): 2216-2229, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36632034

RESUMEN

Many transient processes in cells arise from the binding of cytosolic proteins to membranes. Quantifying this membrane binding and its associated diffusion in the living cell is therefore of primary importance. Dynamic photonic microscopies, e.g., single/multiple particle tracking, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy (FCS), enable non-invasive measurement of molecular mobility in living cells and their plasma membranes. However, FCS with a single beam waist is of limited applicability with complex, non-Brownian, motions. Recently, the development of FCS diffusion laws methods has given access to the characterization of these complex motions, although none of them is applicable to the membrane binding case at the moment. In this study, we combined computer simulations and FCS experiments to propose an FCS diffusion law for membrane binding. First, we generated computer simulations of spot-variation FCS (svFCS) measurements for a membrane binding process combined to 2D and 3D diffusion at the membrane and in the bulk/cytosol, respectively. Then, using these simulations as a learning set, we derived an empirical diffusion law with three free parameters: the apparent binding constant KD, the diffusion coefficient on the membrane D2D, and the diffusion coefficient in the cytosol, D3D. Finally, we monitored, using svFCS, the dynamics of retroviral Gag proteins and associated mutants during their binding to supported lipid bilayers of different lipid composition or at plasma membranes of living cells, and we quantified KD and D2D in these conditions using our empirical diffusion law. Based on these experiments and numerical simulations, we conclude that this new approach enables correct estimation of membrane partitioning and membrane diffusion properties (KD and D2D) for peripheral membrane molecules.


Asunto(s)
Membrana Dobles de Lípidos , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Membranas , Espectrometría de Fluorescencia/métodos , Difusión
5.
RNA Biol ; 20(1): 272-280, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272117

RESUMEN

RNA interference (RNAi) offers an efficient way to repress genes of interest, and it is widely used in research settings. Clinical applications emerged more recently, with 5 approved siRNAs (the RNA guides of the RNAi effector complex) against human diseases. The development of siRNAs against the SARS-CoV-2 virus could therefore provide the basis of novel COVID-19 treatments, while being easily adaptable to future variants or to other, unrelated viruses. Because the biochemistry of RNAi is very precisely described, it is now possible to design siRNAs with high predicted activity and specificity using only computational tools. While previous siRNA design algorithms tended to rely on simplistic strategies (raising fully complementary siRNAs against targets of interest), our approach uses the most up-to-date mechanistic description of RNAi to allow mismatches at tolerable positions and to force them at beneficial positions, while optimizing siRNA duplex asymmetry. Our pipeline proposes 8 siRNAs against SARS-CoV-2, and ex vivo assessment confirms the high antiviral activity of 6 out of 8 siRNAs, also achieving excellent variant coverage (with several 3-siRNA combinations recognizing each correctly-sequenced variant as of September2022). Our approach is easily generalizable to other viruses as long as avariant genome database is available. With siRNA delivery procedures being currently improved, RNAi could therefore become an efficient and versatile antiviral therapeutic strategy.


Asunto(s)
COVID-19 , Virus , Humanos , ARN Interferente Pequeño/genética , SARS-CoV-2/genética , COVID-19/genética , Interferencia de ARN , Virus/genética , Antivirales/farmacología , Antivirales/uso terapéutico
6.
Biol Cell ; 114(10): 259-275, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35844059

RESUMEN

BACKGROUD: Extracellular vesicles (EVs) are nanometric membrane vesicles produced by cells and involved in cell-cell communication. EV formation can occur in endosomal compartments whose budding depends on the ESCRT machinery (i.e., exosomes), or at the cell plasma membrane (i.e., EVs or microvesicles). How these EVs bud from the cell plasma membrane is not completely understood. Membrane curvatures of the plasma membrane toward the exterior are often generated by I-BAR domain proteins. I-BAR proteins are cytosolic proteins that when activated bind to the cell plasma membrane and are involved in protrusion formation including filopodia and lamellipodia. These proteins contain a conserved I-BAR domain that senses curvature and induces negative membrane curvatures at the plasma membrane. I-BAR proteins, such as IRSp53, also interact with actin co-factors to favor membrane protrusions. RESULTS: Here, we explore whether the I-BAR protein IRSp53 is sorting with EVs and if ectopic GFP-tagged I-BAR proteins, such as IRSp53-GFP, as well as related IRTKS-GFP or Pinkbar proteins, can be found in these EVs originated from the cell plasma membrane. We found that a subpopulation of these I-BAR EVs, which are negative for the CD81 exosomal biomarker, are produced from the cell plasma membrane in a TSG101-independent manner but in an Arp2/3-dependent manner. CONCLUSIONS: Our results thus reveal that IRSp53 containing EVs represent a subset of plasma membrane EVs whose production depends on branched actin. SIGNIFICANCE: IRSp53 belongs to the I-BAR family proteins involved in curving cell membranes through a link with cortical actin. In that perspective, IRSp53 was shown to help membrane curvature of HIV-1 particles and, here, to be part of the budding process of a sub-population of EVs through its link with Arp2/3. IRSp53 is consequently a biomarker of these EVs of the cell plasma membrane.


Asunto(s)
Actinas , Vesículas Extracelulares , Actinas/metabolismo , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
7.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569398

RESUMEN

Airway-liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (IFI44, IFIT1, IFIT3, IFI35, IRF9, MX1, OAS1, OAS3 and ISG15) and inflammatory genes (NFKBIA, CSF1, FOSL1, IL32 and CXCL10) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus. Extracellular matrix genes (ITGB6, ITGB1 and GJA1) were also altered in infected cells. Single-cell RNA sequencing data revealed that SARS-CoV-2 infection damaged the respiratory epithelium, particularly mature ciliated cells. The expression of genes encoding intercellular communication and adhesion proteins was also deregulated, suggesting a mechanism to promote shedding of infected epithelial cells. These data demonstrate that ALI/iALI models help to explain the airway epithelium response to SARS-CoV-2 infection and are a key tool for developing COVID-19 treatments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Transcriptoma , Células Epiteliales , Epitelio , Interferones/genética , Mucosa Respiratoria
8.
Allergy ; 77(6): 1885-1894, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34652831

RESUMEN

BACKGROUND: Limited information exists on nursing home (NH) residents regarding BNT162b2 vaccine efficacy in preventing SARS-CoV-2 and severe COVID-19, and its association with post-vaccine humoral response. METHODS: 396 residents from seven NHs suffering a SARS-CoV-2 B.1.1.7 (VOC-α) outbreak at least 14 days after a vaccine campaign were repeatedly tested using SARS-CoV-2 real-time reverse-transcriptase polymerase chain reaction on nasopharyngeal swab test (RT-qPCR). SARS-CoV-2 receptor-binding domain (RBD) of the S1 subunit (RBD-IgG) was measured in all residents. Nucleocapsid antigenemia (N-Ag) was measured in RT-qPCR-positive residents and serum neutralizing antibodies in vaccinated residents from one NH. RESULTS: The incidence of positive RT-qPCR was lower in residents vaccinated by two doses (72/317; 22.7%) vs one dose (10/31; 32.3%) or non-vaccinated residents (21/48; 43.7%; p < .01). COVID-19-induced deaths were observed in 5 of the 48 non-vaccinated residents (10.4%), in 2 of the 31 who had received one dose (6.4%), and in 3 of the 317 (0.9%) who had received two doses (p = .0007). Severe symptoms were more common in infected non-vaccinated residents (10/21; 47.6%) than in infected vaccinated residents (15/72; 21.0%; p = .002). Higher levels of RBD-IgG (n = 325) were associated with a lower SARS-CoV-2 incidence. No in vitro serum neutralization activity was found for RBD-IgG levels below 1050 AU/ml. RBD-IgG levels were inversely associated with N-Ag levels, found as a risk factor of severe COVID-19. CONCLUSIONS: Two BNT162b2 doses are associated with a 48% reduction of SARS-CoV-2 incidence and a 91.3% reduction of death risk in residents from NHs facing a VOC-α outbreak. Post-vaccine RBD-IgG levels correlate with BNT162b2 protection against SARS-CoV-2 B.1.1.7.


Asunto(s)
COVID-19 , Vacunas , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Brotes de Enfermedades/prevención & control , Humanos , Inmunoglobulina G , SARS-CoV-2
9.
Virologie (Montrouge) ; 25(3): 153-167, 2021 06 01.
Artículo en Francés | MEDLINE | ID: mdl-34240709

RESUMEN

The recent revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and acquisition speed, led to the ability to visualize nano-scaled objects. Currently, the use of a new generation of super-resolution fluorescence microscopes coupled to improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus and molecule level. In this review, after a brief chronological description of these new approaches, we highlight several examples of super-resolution microscopies that have allowed to revisit our understanding of several human viruses and of host-pathogen interactions.

10.
Virologie (Montrouge) ; 25(3): 47-60, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34240711

RESUMEN

The recent revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and acquisition speed, led to the ability to visualize nano-scaled objects. Currently, the use of a new generation of super-resolution fluorescence microscopes coupled to improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus and molecule level. In this review, after a brief chronological description of these new approaches, we highlight several examples of super-resolution microscopies that have allowed to revisit our understanding of several human viruses and of host-pathogen interactions.


Asunto(s)
Imagen Individual de Molécula , Virus , Colorantes Fluorescentes , Humanos , Microscopía Fluorescente
12.
Phys Biol ; 17(1): 015003, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31765328

RESUMEN

We present a Bayesian framework for inferring spatio-temporal maps of diffusivity and potential fields from recorded trajectories of single molecules inside living cells. The framework naturally lets us regularise the high-dimensional inference problem using prior distributions in order to obtain robust results. To overcome the computational complexity of inferring thousands of map parameters from large single particle tracking datasets, we developed a stochastic optimisation method based on local mini-batches and parsimonious gradient calculation. We quantified the gain in convergence speed on numerical simulations, and we demonstrated for the first time temporal regularisation and aligned values of the inferred potential fields across multiple time segments. As a proof-of-concept, we mapped the dynamics of HIV-1 Gag proteins involved in the formation of virus-like particles (VLPs) on the plasma membrane of live T cells at high spatial and temporal resolutions. We focused on transient aggregation events lasting only on tenth of the time required for full VLP formation. The framework and optimisation methods are implemented in the TRamWAy open-source software platform for analysing single biomolecule dynamics.


Asunto(s)
VIH-1/fisiología , Análisis de la Célula Individual/métodos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Teorema de Bayes , Membrana Celular/virología , Modelos Biológicos , Análisis Espacio-Temporal , Linfocitos T/virología
13.
Proc Natl Acad Sci U S A ; 113(23): E3260-9, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27226300

RESUMEN

The Q fever bacterium Coxiella burnetii replicates inside host cells within a large Coxiella-containing vacuole (CCV) whose biogenesis relies on the Dot/Icm-dependent secretion of bacterial effectors. Several membrane trafficking pathways contribute membranes, proteins, and lipids for CCV biogenesis. These include the endocytic and autophagy pathways, which are characterized by phosphatidylinositol 3-phosphate [PI(3)P]-positive membranes. Here we show that the C. burnetii secreted effector Coxiella vacuolar protein B (CvpB) binds PI(3)P and phosphatidylserine (PS) on CCVs and early endosomal compartments and perturbs the activity of the phosphatidylinositol 5-kinase PIKfyve to manipulate PI(3)P metabolism. CvpB association to early endosome triggers vacuolation and clustering, leading to the channeling of large PI(3)P-positive membranes to CCVs for vacuole expansion. At CCVs, CvpB binding to early endosome- and autophagy-derived PI(3)P and the concomitant inhibition of PIKfyve favor the association of the autophagosomal machinery to CCVs for optimal homotypic fusion of the Coxiella-containing compartments. The importance of manipulating PI(3)P metabolism is highlighted by mutations in cvpB resulting in a multivacuolar phenotype, rescuable by gene complementation, indicative of a defect in CCV biogenesis. Using the insect model Galleria mellonella, we demonstrate the in vivo relevance of defective CCV biogenesis by highlighting an attenuated virulence phenotype associated with cvpB mutations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Coxiella burnetii , Vacuolas/metabolismo , Animales , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Chlorocebus aethiops , Coxiella burnetii/metabolismo , Coxiella burnetii/patogenicidad , Humanos , Lepidópteros/microbiología , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Virulencia
14.
Biochim Biophys Acta Gen Subj ; 1862(6): 1421-1431, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29571744

RESUMEN

BACKGROUND: HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with RNA, and the p6 domain containing the PTAP motif that binds the cellular ESCRT factor TSG101 and ALIX. Deletion of the NC domain of Gag (GagNC) results in defective Gag assembly, a decrease in virus production and, thus probably affects recruitment of the ESCRT machinery. To investigate the role of GagNC in this recruitment, we analysed its impact on TSG101 and ALIX localisations and interactions in cells expressing Gag. METHODS: Cells expressing mCherry-Gag or derivatives, alone or together with eGFP-TSG101 or eGFP-ALIX, were analysed by confocal microscopy and FLIM-FRET. Chemical shift mapping between TSG101-UEV motif and Gag C-terminus was performed by NMR. RESULTS: We show that deletion of NC or of its two zinc fingers decreases the amount of Gag-TSG101 interacting complexes in cells. These findings are supported by NMR data showing chemical shift perturbations in the NC domain in- and outside - of the zinc finger elements upon TSG101 binding. The NMR data further identify a large stretch of amino acids within the p6 domain directly interacting with TSG101. CONCLUSION: The NC zinc fingers and p6 domain of Gag participate in the formation of the Gag-TSG101 complex and in its cellular localisation. GENERAL SIGNIFICANCE: This study illustrates that the NC and p6 domains cooperate in the interaction with TSG101 during HIV-1 budding. In addition, details on the Gag-TSG101 complex were obtained by combining two high resolution biophysical techniques.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Nucleocápside/metabolismo , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Células HeLa , Humanos , Unión Proteica
15.
J Virol ; 89(16): 8162-81, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26018170

RESUMEN

UNLABELLED: During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. IMPORTANCE: During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Productos del Gen gag/metabolismo , VIH-1/metabolismo , Transducción de Señal , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Humanos , Células Jurkat , Proteínas del Tejido Nervioso/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP rac1/metabolismo
16.
Langmuir ; 32(35): 8916-25, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27506271

RESUMEN

For the past 2 decades, emerging single-nanopore technologies have opened the route to multiple sensing applications. Besides DNA sensing, the identification of proteins and amyloids is a promising field for early diagnosis. However, the influence of the interactions between the nanopore surface and proteins should be taken into account. In this work, we have selected three proteins (avidin, lysozyme, and IgG) that exhibit different affinities with the SiNx surface, and we have also examined lysozyme amyloid. Our results show that the piranha treatment of SiNx significantly decreases protein adsorption. Moreover, we have successfully detected all proteins (pore diameter 17 nm) and shown the possibility of discriminating between denatured lysozyme and its amyloid. For all proteins, the capture rates are lower than expected, and we evidence that they are correlated with the affinity of proteins to the surface. Our result confirms that proteins interacting only with the nanopore surface wall stay long enough to be detected. For lysozyme amyloid, we show that the use of the nanopore is suitable for determining the number of monomer units even if only the proteins interacting with the nanopore are detected.


Asunto(s)
Amiloide/análisis , Avidina/análisis , Inmunoglobulina G/análisis , Muramidasa/análisis , Compuestos de Silicona/química , Adsorción , Amiloide/química , Avidina/química , Técnicas Electroquímicas , Inmunoglobulina G/química , Cinética , Muramidasa/química , Nanoporos/ultraestructura , Soluciones
17.
Retrovirology ; 12: 78, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26376973

RESUMEN

BACKGROUND: HIV-1 replication results in mitochondrial damage that is enhanced during antiretroviral therapy (ART). The onset of HIV-1 replication is regulated by viral protein Tat, a 101-residue protein codified by two exons that elongates viral transcripts. Although the first exon of Tat (aa 1-72) forms itself an active protein, the presence of the second exon (aa 73-101) results in a more competent transcriptional protein with additional functions. RESULTS: Mitochondrial overall functions were analyzed in Jurkat cells stably expressing full-length Tat (Tat101) or one-exon Tat (Tat72). Representative results were confirmed in PBLs transiently expressing Tat101 and in HIV-infected Jurkat cells. The intracellular expression of Tat101 induced the deregulation of metabolism and cytoskeletal proteins which remodeled the function and distribution of mitochondria. Tat101 reduced the transcription of the mtDNA, resulting in low ATP production. The total amount of mitochondria increased likely to counteract their functional impairment. These effects were enhanced when Tat second exon was expressed. CONCLUSIONS: Intracellular Tat altered mtDNA transcription, mitochondrial content and distribution in CD4+ T cells. The importance of Tat second exon in non-transcriptional functions was confirmed. Tat101 may be responsible for mitochondrial dysfunctions found in HIV-1 infected patients.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , ADN Mitocondrial/genética , VIH-1/fisiología , Mitocondrias/ultraestructura , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/ultraestructura , Citoesqueleto/patología , Citoesqueleto/virología , ADN Mitocondrial/metabolismo , Exones , Glucólisis , Humanos , Células Jurkat , Leucocitos Mononucleares , Mitocondrias/genética
18.
Med Sci (Paris) ; 31(5): 522-8, 2015 May.
Artículo en Francés | MEDLINE | ID: mdl-26059303

RESUMEN

Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level.


Asunto(s)
VIH-1/fisiología , VIH-1/ultraestructura , Microscopía de Fuerza Atómica , Animales , Cápside/ultraestructura , Diseño de Equipo , Proteínas del Virus de la Inmunodeficiencia Humana/fisiología , Proteínas del Virus de la Inmunodeficiencia Humana/ultraestructura , Humanos , Ratones , Micromanipulación/métodos , Microscopía de Fuerza Atómica/instrumentación , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Receptores del VIH/fisiología , Receptores del VIH/ultraestructura , Análisis Espectral/métodos , Estrés Mecánico , Fenómenos Fisiológicos de los Virus
19.
Biophys J ; 106(3): 577-85, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24507598

RESUMEN

In the accepted model for human immunodeficiency virus preassembly in infected host cells, the anchoring to the intracellular leaflet of the membrane of the matrix domain (MA) that lies at the N-terminus of the viral Gag protein precursor appears to be one of the crucial steps for particle assembly. In this study, we simulated the membrane anchoring of human immunodeficiency virus-1 myristoylated MA protein using a coarse-grained representation of both the protein and the membrane. Our calculations first suggest that the myristoyl group could spontaneously release from its initial hydrophobic pocket before MA protein interacts with the lipid membrane. All-atom simulations confirmed this possibility with a related energy cost estimated to be ~5 kcal.mol(-1). The phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) head binds preferentially to the MA highly basic region as described in available NMR data, but interestingly without flipping of its 2' acyl chain into the MA protein. Moreover, MA was able to confine PI(4,5)P2 lipids all around its molecular surface after having found a stable orientation at the membrane surface. Our results suggest that this orientation is dependent on Myr anchoring and that this confinement induces a lateral segregation of PI(4,5)P2 in domains. This is consistent with a PI(4,5)P2 enrichment of the virus envelope as compared to the host cell membrane.


Asunto(s)
Antígenos VIH/metabolismo , Simulación de Dinámica Molecular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/virología , Antígenos VIH/química , Humanos , Datos de Secuencia Molecular , Fosfatidilinositol 4,5-Difosfato/química , Unión Proteica , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química
20.
Methods Mol Biol ; 2807: 61-76, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743221

RESUMEN

The 20-year revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and timely acquisition, allows the visualization of nanoscaled objects in cell biology. Currently, the use of a recent generation of super-resolution fluorescence microscope coupled with improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus particle or protein level. Here, we highlight the protocol for visualizing HIV-1 Gag assembly at the host T-cell plasma membrane using super-resolution light microscopy. Total internal reflection fluorescence microscopy (TIRF-M) coupled with single-molecule localization microscopy (SMLM) enables the detection and characterization of the assembly of viral proteins at the plasma membrane of infected host cells at the single protein level. Here, we describe the TIRF equipment, the T-cell culture for HIV-1, the sample preparation for single-molecule localization microscopies such as PALM and STORM, acquisition protocols, and Gag assembling cluster analysis.


Asunto(s)
Membrana Celular , VIH-1 , Microscopía Fluorescente , Imagen Individual de Molécula , Linfocitos T , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , VIH-1/fisiología , Humanos , Membrana Celular/metabolismo , Membrana Celular/virología , Imagen Individual de Molécula/métodos , Linfocitos T/virología , Linfocitos T/metabolismo , Microscopía Fluorescente/métodos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA