Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Pept Sci ; 30(6): e3569, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38301277

RESUMEN

The pursuit of novel antifungal agents is imperative to tackle the threat of antifungal resistance, which poses major risks to both human health and to food security. Iturin A is a cyclic lipopeptide, produced by Bacillus sp., with pronounced antifungal properties against several pathogens. Its challenging synthesis, mainly due to the laborious synthesis of the ß-amino fatty acid present in its structure, has hindered the study of its mode of action and the development of more potent analogues. In this work, a facile synthesis of bioactive iturin A analogues containing an alkylated cysteine residue is presented. Two analogues with opposite configurations of the alkylated cysteine residue were synthesized, to evaluate the role of the stereochemistry of the newly introduced amino acid on the bioactivity. Antifungal assays, conducted against F. graminearum, showed that the novel analogues are bioactive and can be used as a synthetic model for the design of new analogues and in structure-activity relationship studies. The assays also highlight the importance of the ß-amino acid in the natural structure and the role of the stereochemistry of the amino fatty acid, as the analogue with the D configuration showed stronger antifungal properties than the one with the L configuration.


Asunto(s)
Antifúngicos , Fusarium , Lipopéptidos , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad , Lipopéptidos/farmacología , Lipopéptidos/química , Lipopéptidos/síntesis química , Fusarium/efectos de los fármacos , Estructura Molecular
2.
Environ Sci Technol ; 57(26): 9762-9772, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37341426

RESUMEN

Three peptides comprising mono-, di-, and tri-fluoroethylglycine (MfeGly, DfeGly, and TfeGly) residues alternating with lysine were digested by readily available proteases (elastase, bromelain, trypsin, and proteinase K). The degree of degradation depended on the enzyme employed and the extent of fluorination. Incubation of the peptides with a microbial consortium from garden soil resulted in degradation, yielding fluoride ions. Further biodegradation studies conducted with the individual fluorinated amino acids demonstrated that the degree of defluorination followed the sequence MfeGly > DfeGly > TfeGly. Enrichment of the soil bacteria employing MfeGly as a sole carbon and energy source resulted in the isolation of a bacterium, which was identified as Serratia liquefaciens. Cell-free extracts of this bacterium enzymatically defluorinated MfeGly, yielding fluoride ion and homoserine. In silico analysis of the genome revealed the presence of a gene that putatively codes for a dehalogenase. However, the low overall homology to known enzymes suggests a potentially new hydrolase that can degrade monofluorinated compounds. 19F NMR analysis of aqueous soil extracts revealed the unexpected presence of trifluoroacetate, fluoride ion, and fluoroacetate. Growth of the soil consortium in tryptone soya broth supplemented with fluoride ions resulted in fluoroacetate production; thus, bacteria in the soil produce and degrade organofluorine compounds.


Asunto(s)
Bacterias , Fluoruros , Fluoruros/análisis , Fluoruros/metabolismo , Bacterias/genética , Fluoroacetatos/análisis , Fluoroacetatos/metabolismo , Péptidos/metabolismo , Biodegradación Ambiental
3.
World J Microbiol Biotechnol ; 39(11): 296, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37658215

RESUMEN

Fungi have been extensively studied for their capacity to biotransform a wide range of natural and xenobiotic compounds. This versatility is a reflection of the broad substrate specificity of fungal enzymes such as laccases, peroxidases and cytochromes P450, which are involved in these reactions. This review gives an account of recent advances in the understanding of fungal metabolism of drugs and pollutants such as dyes, agrochemicals and per- and poly-fluorinated alkyl substances (PFAS), and describes the key enzymes involved in xenobiotic biotransformation. The potential of fungi and their enzymes in the bioremediation of polluted environments and in the biocatalytic production of important compounds is also discussed.


Asunto(s)
Contaminantes Ambientales , Xenobióticos , Especificidad por Sustrato , Biocatálisis , Colorantes
4.
Appl Microbiol Biotechnol ; 105(24): 9359-9369, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34755212

RESUMEN

Fluoxetine (FLX) is a blockbuster drug with annual sales in the billions of dollars. Its widespread use has resulted in its detection in water courses, where it impacts aquatic life. Investigations on the biodegradation of FLX by microorganisms are important, since augmentation of secondary wastewater treatment by an effective degrader may be one method of improving the drug's removal. In this paper, we demonstrate that common environmental bacteria can use FLX as a sole carbon and energy source. Investigations into the metabolites formed using fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR) and gas chromatography-mass spectrometry indicated that the drug was initially hydrolysed to yield 4-(trifluoromethyl)phenol (TFMP) and 3-(methylamino)-1-phenylpropan-1-ol. Since the fluorometabolite accumulated, the bacteria presumably used the latter compound for carbon and energy. Further growth studies revealed that TFMP could also be used as a sole carbon and energy source and was most likely catabolised via meta-cleavage, since semialdehyde products were detected in culture supernatants. The final products of the degradation pathway were trifluoroacetate and fluoride ion; the former is a dead-end product and was not further catabolised. Fluoride ion most likely arises owing to spontaneous defluorination of the meta-cleavage products that were shown to be photolabile.Key points• Bacteria can use FLX and TFMP as sole carbon and energy sources for their growth.• Biodegradation produces fluorometabolites that were detected by 19F NMR and GC-MS.• Trifluoroacetic acid and fluoride ion were identified as end products.


Asunto(s)
Fluoxetina , Preparaciones Farmacéuticas , Bacterias , Biodegradación Ambiental , Fluoruros , Flúor , Ácido Trifluoroacético
5.
Beilstein J Org Chem ; 17: 293-318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33564338

RESUMEN

We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.

6.
Biofouling ; 35(3): 299-307, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31025575

RESUMEN

Most biofilm studies employ single species, yet in nature biofilms exist as mixed cultures, with inevitable effects on growth and development of each species present. To investigate how related species of bacteria interact in biofilms, two Pseudomonas spp., Pseudomonas fluorescens and Pseudomonas putida, were cultured in capillary bioreactors and their growth measured by confocal microscopy and cell counting. When inoculated in pure culture, both bacteria formed healthy biofilms within 72 h with uniform coverage of the surface. However, when the bioreactors were inoculated with both bacteria simultaneously, P. putida was completely dominant after 48 h. Even when the inoculation by P. putida was delayed for 24 h, P. fluorescens was eliminated from the capillary within 48 h. It is proposed that production of the lipopeptide putisolvin by P. putida is the likely reason for the reduction of P. fluorescens. Putisolvin biosynthesis in the dual-species biofilm was confirmed by mass spectrometry.


Asunto(s)
Biopelículas , Reactores Biológicos/microbiología , Pseudomonas fluorescens/fisiología , Pseudomonas putida/fisiología , Biopelículas/crecimiento & desarrollo
7.
Biodegradation ; 29(3): 259-270, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29603052

RESUMEN

The pentafluorosulfanyl (SF5-) substituent conveys properties that are beneficial to drugs and agrochemicals. As synthetic methodologies improve the number of compounds containing this group will expand and these chemicals may be viewed as emerging pollutants. As many microorganisms can degrade aromatic xenobiotics, we investigated the catabolism of SF5-substituted aminophenols by bacteria and found that some Pseudomonas spp. can utilise these compounds as sole carbon and energy sources. GC-MS analysis of the culture supernatants from cultures grown in 5-(pentafluorosulfanyl) 2-aminophenol demonstrated the presence of the N-acetylated derivative of the starting substrate and 4-(pentafluorosulfanyl)catechol. Biotransformation experiments with re-suspended cells were also conducted and fluorine-19 NMR analyses of the organic extract and aqueous fraction from suspended cell experiments revealed new resonances of SF5-substituted intermediates. Supplementation of suspended cell cultures with yeast extract dramatically improved the degradation of the substrate as well as the release of fluoride ion. 4-(Pentafluorosulfanyl)catechol was shown to be a shunt metabolite and toxic to some of the bacteria. This is the first study to demonstrate that microorganisms can biodegrade SF5-substituted aromatic compounds releasing fluoride ion, and biotransform them generating a toxic metabolite.


Asunto(s)
Aminofenoles/metabolismo , Pseudomonas/metabolismo , Compuestos de Azufre/metabolismo , Aminofenoles/química , Biodegradación Ambiental , Biotransformación , Catecoles/metabolismo , Flúor/metabolismo , Espectroscopía de Resonancia Magnética , Metaboloma , Compuestos de Azufre/química
8.
Xenobiotica ; 47(9): 763-770, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27541932

RESUMEN

1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3. 19F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.


Asunto(s)
Biotransformación , Ácidos Carboxílicos/metabolismo , Cunninghamella/metabolismo , Piridinas/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Lactonas/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Microsomas Hepáticos/metabolismo , Organofosfatos/metabolismo , Oxazoles/metabolismo
9.
Bioorg Med Chem Lett ; 26(9): 2255-8, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27020303

RESUMEN

Incorporation of fluorine in a drug can dramatically affect its metabolism and methods to assess the effect of fluorine substitution on drug metabolism are required for effective drug design. Employing a previously developed chemical-microbial method the metabolism of a series of fluorinated biphenyl ethers was determined. The substrates were synthesized via Ullmann-type condensation reactions between bromotoluene and fluorophenol. The ethers were incubated with the fungus Cunninghamella elegans, which oxidises xenobiotics in an analogous fashion to mammals, generating a number of hydroxylated biphenyl ethers and acids. The propensity of the fluorinated ring to be hydroxylated depended upon the position of the fluorine atom, and the oxidation of the methyl group was observed when it was meta to the oxygen. The experiments demonstrate the applicability of the method to rapidly determine the effect of fluorine substitution on CYP-catalysed biotransformation of pro-drug molecules.


Asunto(s)
Compuestos de Bifenilo/farmacología , Flúor/química , Profármacos/farmacología , Compuestos de Bifenilo/química , Éteres/química , Profármacos/química
10.
Appl Microbiol Biotechnol ; 100(6): 2617-27, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26830103

RESUMEN

Since the discovery over 60 years ago of fluorocortisone's biological properties (9-α-Fluoro derivatives of cortisone and hydrocortisone; Fried J and Sabo EF, J Am Chem Soc 76: 1455-1456, 1954), the number of fluorinated drugs has steadily increased. With the improvement in synthetic methodologies, this trend is likely to continue and will lead to the introduction of new fluorinated substituents into pharmaceutical compounds. Although the biotransformation of organofluorine compounds by microorganisms has been well studied, specific investigations on fluorinated drugs are relatively few, despite the increase in the number and variety of fluorinated drugs that are available. The strength of the carbon-fluorine bond conveys stability to fluorinated drugs; thus, they are likely to be recalcitrant in the environment or may be partially metabolized to a more toxic metabolite. This review examines the research done on microbial biotransformation and biodegradation of fluorinated drugs and highlights the importance of understanding how microorganisms interact with this class of compound from environmental, clinical and biotechnological perspectives.


Asunto(s)
Bacterias/metabolismo , Contaminantes Ambientales/metabolismo , Hidrocarburos Fluorados/metabolismo , Preparaciones Farmacéuticas/metabolismo , Biotransformación
11.
Appl Microbiol Biotechnol ; 100(3): 1285-1295, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26497174

RESUMEN

The genome of the amphotericin producer Streptomyces nodosus was sequenced. A single scaffold of 7,714,110 bp was obtained. Biosynthetic genes were identified for several natural products including polyketides, peptides, siderophores and terpenes. The majority of these clusters specified known compounds. Most were silent or expressed at low levels and unlikely to compete with amphotericin production. Biosynthesis of a skyllamycin analogue was activated by introducing expression plasmids containing either a gene for a LuxR transcriptional regulator or genes for synthesis of the acyl moiety of the lipopeptide. In an attempt to boost amphotericin production, genes for acyl CoA carboxylases, a phosphopantetheinyl transferase and the AmphRIV transcriptional activator were overexpressed, and the effects on yields were investigated. This study provides the groundwork for metabolic engineering of S. nodosus strains to produce high yields of amphotericin analogues.

12.
Appl Microbiol Biotechnol ; 99(23): 10209-14, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26272093

RESUMEN

Development of a biosensor for the convenient measurement of acetate and propionate concentrations in a two-phase anaerobic digestor (AD) requires a bacterium that will be unresponsive to the other organic acids present in the leachate, of which lactate is the most abundant. Successive gene knockouts of E.coli W3110 D-lactate dehydrogenase (dld), L-lactate dehydrogenase (lldD), glycolate oxidase (glcD) and a suspected L-lactate dehdrogenase (ykgF) were performed. The resulting quadruple mutant (IMD Wldgy) was incapable of growth on D- and L-lactate, whereas the wild type grew readily on these substrates. Furthermore, the O2 consumption rates of acetate-grown IMD Wldgy cell suspensions supplied with either acetate (0.1 mM) or a synthetic leachate including acetate (0.1 mM) and DL-lactate (1 mM) were identical (2.79 and 2.70 mg l(-1) min(-1), respectively). This was in marked contrast to similar experiments with the wild type which gave initial O2 consumption rates of 2.00, 2.36 and 2.97 mg l(-1) min(-1) when cell suspensions were supplied with acetate (0.1 mM), acetate (0.1 mM) plus D-lactate (1 mM) or acetate (0.1 mM) plus L-lactate (1 mM), respectively. The knockout strain provides a platform for the design of a biosensor that can accessibly monitor acetate and propionate concentrations in AD leachate via O2-uptake measurements.


Asunto(s)
Acetatos/análisis , Técnicas Biosensibles/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Propionatos/análisis , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Técnicas de Inactivación de Genes , Oxígeno/metabolismo
13.
Biofouling ; 31(1): 13-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25563340

RESUMEN

In the context of biofilm development, detachment is of practical importance when placed in a biofilm management perspective. The objective of the present study was to examine biofilm structure and biofilm detachment under controlled conditions for two distinct microorganisms grown under constant shear conditions. Detached biofilm biomass was regularly collected and analysed over the course of 72 h biofilm growth by Pseudomonas putida and Pseudomonas fluorescens cells, and biofilm structural development assessed using confocal microscopy. The two Pseudomonas spp., which had very similar specific growth rates in planktonic culture, presented notably different characteristics in terms of biofilm morphology but their detachment behaviours over time were very similar. These findings underline the intrinsic complexity of the detachment phenomenon.


Asunto(s)
Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Pseudomonas fluorescens/crecimiento & desarrollo , Pseudomonas putida/crecimiento & desarrollo , Biomasa , Microscopía Confocal , Estrés Mecánico
14.
Biotechnol Lett ; 37(1): 19-28, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25179825

RESUMEN

Several wild type and recombinant microorganisms can transform drugs to the equivalent human metabolites. Fungi, such as Cunninghamella spp., and Streptomyces bacteria express cytochrome P450 (CYP) enzymes that enable analogous phase I (oxidative) reactions with a wide range of drugs. The gene encoding the bifunctional CYP102A1 in Bacillus megaterium can be expressed easily in E. coli, and extensive mutagenesis experiments have generated numerous variants that can produce human drug metabolites. Additionally, human CYP isoforms have been expressed in various hosts. The application of microbial CYPs to the production of human drug metabolites is reviewed, and additional applications in the field of drug development are considered.


Asunto(s)
Bacterias/metabolismo , Investigación Biomédica , Preparaciones Farmacéuticas/metabolismo , Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Descubrimiento de Drogas , Modelos Biológicos
15.
J Ind Microbiol Biotechnol ; 42(5): 799-806, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25665503

RESUMEN

Cunninghamella elegans is a fungus that has been used extensively as a microbial model of mammalian drug metabolism, whilst its potential as a biocatalyst for the preparative production of human drug metabolites has been often proposed, little effort has been made to enable this. Here, we describe a workflow for the application of C. elegans for the production of drug metabolites, starting from well-plate screening assays leading to the preparative production of drug metabolites using fungus immobilised either in alginate or as a biofilm. Using 12- and 96-well plates, the simultaneous screening of several drug biotransformations was achieved. To scale up the biotransformation, both modes of immobilisation enabled semi-continuous production of hydroxylated drug metabolites through repeated addition of drug and rejuvenation of the fungus. It was possible to improve the productivity in the biofilm culture for the production of 4'-hydroxydiclofenac from 1 mg/l h to over 4 mg/l h by reducing the incubation time for biotransformation and the number of rejuvenation steps.


Asunto(s)
Reactores Biológicos , Cunninghamella/metabolismo , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/metabolismo , Alginatos , Biopelículas , Biotransformación , Células Inmovilizadas/metabolismo , Diclofenaco/análogos & derivados , Diclofenaco/metabolismo , Ácido Glucurónico , Ácidos Hexurónicos , Preparaciones Farmacéuticas/aislamiento & purificación , Factores de Tiempo
16.
Amino Acids ; 46(12): 2745-52, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25193167

RESUMEN

While attempting to improve production of fluoro-iturin A in Bacillus sp. CS93 new mono- and di-fluorinated fengycins were detected in culture supernatants by (19)F NMR and tandem mass spectrometry, after incubation of the bacterium with 3-fluoro-L-tyrosine. The fluorinated amino acid was presumably incorporated in place of one or both of the tyrosyl residues in fengycin. Investigations to generate additional new fluorinated derivatives were undertaken using commercially available fluorinated phenylalanines and 2-fluoro- and 2,3-difluoro-tyrosine that were synthesised by Negishi cross-coupling of iodoalanine and fluorinated bromo-phenols. The anti-fungal activity of the fluorinated lipopeptides was assayed against Trichophyton rubrum and found to be similar to that of the non-fluorinated metabolites.


Asunto(s)
Antifúngicos/química , Antifúngicos/metabolismo , Bacillus/metabolismo , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/química , Antifúngicos/farmacología , Bacillus/química , Halogenación , Estructura Molecular , Péptidos Cíclicos/farmacología , Trichophyton/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/metabolismo
17.
Methods Enzymol ; 696: 251-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658083

RESUMEN

Some species of the genus Cunninghamella (C. elegans, C. echinulata and C. blaskesleeana) produce the same phase I and phase II metabolites when incubated with xenobiotics as mammals, and thus are considered microbial models of mammalian metabolism. This had made these fungi attractive for metabolism studies with drugs, pesticides and environmental pollutants. As a substantial proportion of pharmaceuticals and agrochemicals are fluorinated, their biotransformation has been studied in Cunninghamella fungi and C. elegans in particular. This article details the methods employed for cultivating the fungi in planktonic and biofilm cultures, and extraction and analysis of fluorinated metabolites. Furthermore, protocols for the heterologous expression of Cunninghamella cytochromes P450 (CYPs), which are the enzymes associated with phase I metabolism, are described.


Asunto(s)
Biotransformación , Cunninghamella , Sistema Enzimático del Citocromo P-450 , Xenobióticos , Cunninghamella/metabolismo , Xenobióticos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Halogenación , Biopelículas , Preparaciones Farmacéuticas/metabolismo , Animales
18.
N Biotechnol ; 83: 155-162, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39128541

RESUMEN

Within the circular bioeconomy the production of optically pure LA from 2nd generation feedstocks would be ideal but it is very challenging. In this paper genetically engineered Escherichia coli strains were created to resolve racemic LA solutions synthesised and produced from the fermentation of organic waste or ensiled grass. Refining LA racemic mixtures into either a D- or L-LA was achieved by cells being able to consume one LA isomer as a sole carbon and energy source while not being able to consume the other. A D-LA refining strain JSP0005 was grown on fermented source-sorted organic household waste and different grass silage leachates, which are 2nd generation feedstocks containing up to 33 g/L lactic acid racemate. In all growth experiments, L-LA was completely removed leaving D-LA as the only LA stereoisomer, i.e. resulting in optically pure D-LA, which also increased by as much as 248.6 % from its starting concentration, corresponding to 38 g/L. The strains resulting from this study are a promising first step towards a microbial based LA biorefining process.


Asunto(s)
Escherichia coli , Fermentación , Ácido Láctico , Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biosíntesis
19.
Amino Acids ; 45(5): 1157-68, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23917844

RESUMEN

A series of compounds based on the structure of bacilysin were synthesised and tested for antibacterial activity. The key steps in the syntheses are the coupling of an iodide to a diketopiperazine (DKP) and mono-lactim ether scaffold, respectively. The diastereoselectivity of the coupling reactions was dependant on the scaffold, with selectivity for DKP of about 4:1 and mono-lactim ether exceeding 98:2. Subsequent elaboration of the compounds to give open chain dipeptides and DKPs that mimic the structure of bacilysin but substitute the epoxy ketone for a saturated or unsaturated ketone is described. Overall yield from coupling to final product was between 5 and 21 %, with the yield of the saturated products notably higher. The open chain dipeptides demonstrated moderate antibacterial and antifungal activity.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Dicetopiperazinas/química , Dipéptidos/síntesis química , Dipéptidos/farmacología , Estructura Molecular
20.
Org Biomol Chem ; 11(7): 1135-42, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23299916

RESUMEN

A significant proportion of pharmaceuticals are fluorinated and selecting the site of fluorine incorporation can be an important beneficial part a drug development process. Here we describe initial experiments aimed at the development of a general method of selecting optimum sites on pro-drug molecules for fluorination, so that metabolic stability may be improved. Several model biphenyl derivatives were transformed by the fungus Cunninghamella elegans and the bacterium Streptomyces griseus, both of which contain cytochromes P450 that mimic oxidation processes in vivo, so that the site of oxidation could be determined. Subsequently, fluorinated biphenyl derivatives were synthesised using appropriate Suzuki-Miyaura coupling reactions, positioning the fluorine atom at the pre-determined site of microbial oxidation; the fluorinated biphenyl derivatives were incubated with the microorganisms and the degree of oxidation assessed. Biphenyl-4-carboxylic acid was transformed completely to 4'-hydroxybiphenyl-4-carboxylic acid by C. elegans but, in contrast, the 4'-fluoro-analogue remained untransformed exemplifying the microbial oxidation - chemical fluorination concept. 2'-Fluoro- and 3'-fluoro-biphenyl-4-carboxylic acid were also transformed, but more slowly than the non-fluorinated biphenyl carboxylic acid derivative. Thus, it is possible to design compounds in an iterative fashion with a longer metabolic half-life by identifying the sites that are most easily oxidised by in vitro methods and subsequent fluorination without recourse to extensive animal studies.


Asunto(s)
Cunninghamella/química , Hidrocarburos Fluorados/síntesis química , Preparaciones Farmacéuticas/síntesis química , Streptomyces griseus/química , Cunninghamella/metabolismo , Halogenación , Hidrocarburos Fluorados/química , Hidrocarburos Fluorados/metabolismo , Estructura Molecular , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Streptomyces griseus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA