Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007418

RESUMEN

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Asunto(s)
Encéfalo/metabolismo , Técnicas de Inactivación de Genes/métodos , Genes Reporteros , Animales , Encéfalo/citología , Calcio/metabolismo , Línea Celular , Hibridación Fluorescente in Situ , Luz , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/metabolismo , Optogenética , ARN no Traducido/genética , Transgenes/genética
2.
J Neurophysiol ; 120(3): 1286-1292, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897837

RESUMEN

The superficial layers of the superior colliculus (sSC) receive retinal input and project to thalamic regions, the dorsal lateral geniculate (dLGN) and lateral posterior (LP; or pulvinar) nuclei, that convey visual information to cortex. A critical step toward understanding the functional impact of sSC neurons on these parallel thalamo-cortical pathways is determining whether different classes of sSC neurons, which are known to respond to different features of visual stimuli, innervate overlapping or distinct thalamic targets. Here, we identified a transgenic mouse line that labels sSC neurons that project to dLGN but not LP. We utilized selective expression of fluorophores and channelrhodopsin in this and previously characterized mouse lines to demonstrate that distinct cell types give rise to sSC projections to dLGN and LP. We further show that the glutamatergic sSC cell type that projects to dLGN also provides input to the sSC cell type that projects to LP. These results clarify the cellular origin of parallel sSC-thalamo-cortical pathways and reveal an interaction between these pathways via local connections within the sSC. NEW & NOTEWORTHY The superficial layers of the superior colliculus (sSC) project to two visual thalamic targets: the dorsal lateral geniculate (dLGN) and lateral posterior (LP) nuclei. We show that distinct excitatory sSC cell types give rise to these projections; stellate cells project to dLGN and wide-field (WF) cells project to LP. Moreover, these pathways interact via a connection within the sSC from stellate to WF cells.


Asunto(s)
Cuerpos Geniculados/fisiología , Neuronas/fisiología , Pulvinar/fisiología , Colículos Superiores/fisiología , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Vías Visuales/fisiología
3.
J Neurosci ; 36(35): 9111-23, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581453

RESUMEN

UNLABELLED: Neurons respond to specific features of sensory stimuli. In the visual system, for example, some neurons respond to motion of small but not large objects, whereas other neurons prefer motion of the entire visual field. Separate neurons respond equally to local and global motion but selectively to additional features of visual stimuli. How and where does response selectivity emerge? Here, we show that wide-field (WF) cells in retino-recipient layers of the mouse superior colliculus (SC) respond selectively to small moving objects. Moreover, we identify two mechanisms that contribute to this selectivity. First, we show that input restricted to a small portion of the broad dendritic arbor of WF cells is sufficient to trigger dendritic spikes that reliably propagate to the soma/axon. In vivo whole-cell recordings reveal that nearly every action potential evoked by visual stimuli has characteristics of spikes initiated in dendrites. Second, inhibitory input from a different class of SC neuron, horizontal cells, constrains the range of stimuli to which WF cells respond. Horizontal cells respond preferentially to the sudden appearance or rapid movement of large stimuli. Optogenetic reduction of their activity reduces movement selectivity and broadens size tuning in WF cells by increasing the relative strength of responses to stimuli that appear suddenly or cover a large region of space. Therefore, strongly propagating dendritic spikes enable small stimuli to drive spike output in WF cells and local inhibition helps restrict responses to stimuli that are both small and moving. SIGNIFICANCE STATEMENT: How do neurons respond selectively to some sensory stimuli but not others? In the visual system, a particularly relevant stimulus feature is object motion, which often reveals other animals. Here, we show how specific cells in the superior colliculus, one synapse downstream of the retina, respond selectively to object motion. These wide-field (WF) cells respond strongly to small objects that move slowly anywhere through a large region of space, but not to stationary objects or full-field motion. Action potential initiation in dendrites enables small stimuli to trigger visual responses and inhibitory input from cells that prefer large, suddenly appearing, or quickly moving stimuli restricts responses of WF cells to objects that are small and moving.


Asunto(s)
Dendritas/fisiología , Movimiento (Física) , Neuronas/citología , Neuronas/fisiología , Colículos Superiores/citología , Potenciales de Acción/fisiología , Animales , Biofisica , Calcio/metabolismo , Channelrhodopsins , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/clasificación , Optogenética , Técnicas de Placa-Clamp , Estimulación Luminosa , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
4.
J Neurosci ; 35(16): 6575-83, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25904807

RESUMEN

The brain receives information about the direction of object motion from several types of retinal ganglion cells (RGCs). On-Off direction-selective (DS) RGCs respond preferentially to stimuli moving quickly in one of four directions and provide a significant (but difficult to quantify) fraction of RGC input to the SC. On DS RGCs, in comparison, respond preferentially to stimuli moving slowly in one of three directions and are thought to only target retinorecipient nuclei comprising the accessory optic system, e.g., the medial terminal nucleus (MTN). To determine the fraction of SC-projecting RGCs that exhibit direction selectivity, and the specificity with which On-Off and On DS RGCs target retinorecipient areas, we performed optical and electrophysiological recordings from RGCs retrogradely labeled from the mouse SC and MTN. We found, surprisingly, that both On-Off and On DS RGCs innervate the SC; collectively they constitute nearly 40% of SC-projecting RGCs. In comparison, only On DS RGCs project to the MTN. Subsequent experiments revealed that individual On DS RGCs innervate either the SC or MTN and exhibit robust projection-specific differences in somatodendritic morphology, cellular excitability, and light-evoked activity; several projection-specific differences in the output of On DS RGCs correspond closely to differences in excitatory synaptic input the cells receive. Our results reveal a robust projection of On DS RGCs to the SC, projection-specific differences in the response properties of On DS RGCs, and biophysical and synaptic mechanisms that underlie these functional differences.


Asunto(s)
Tronco Encefálico/fisiología , Células Ganglionares de la Retina/fisiología , Colículos Superiores/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Animales , Tronco Encefálico/citología , Femenino , Masculino , Ratones , Retina , Células Ganglionares de la Retina/citología , Colículos Superiores/citología , Vías Visuales/citología
5.
J Neurophysiol ; 116(2): 602-10, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27169509

RESUMEN

The mammalian retina conveys the vast majority of information about visual stimuli to two brain regions: the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). The degree to which retinal ganglion cells (RGCs) send similar or distinct information to the two areas remains unclear despite the important constraints that different patterns of RGC input place on downstream visual processing. To resolve this ambiguity, we injected a glycoprotein-deficient rabies virus coding for the expression of a fluorescent protein into the dLGN or SC; rabies virus labeled a smaller fraction of RGCs than lipophilic dyes such as DiI but, crucially, did not label RGC axons of passage. Approximately 80% of the RGCs infected by rabies virus injected into the dLGN were colabeled with DiI injected into the SC, suggesting that many dLGN-projecting RGCs also project to the SC. However, functional characterization of RGCs revealed that the SC receives input from several classes of RGCs that largely avoid the dLGN, in particular RGCs in which 1) sustained changes in light intensity elicit transient changes in firing rate and/or 2) a small range of stimulus sizes or temporal fluctuations in light intensity elicit robust activity. Taken together, our results illustrate several unexpected asymmetries in the information that the mouse retina conveys to two major downstream targets and suggest that differences in the output of dLGN and SC neurons reflect, at least in part, differences in the functional properties of RGCs that innervate the SC but not the dLGN.


Asunto(s)
Cuerpos Geniculados/citología , Retina/citología , Células Ganglionares de la Retina/fisiología , Colículos Superiores/citología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Luz , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Técnicas de Placa-Clamp , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
6.
J Neurosci ; 34(40): 13458-71, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274823

RESUMEN

The superficial superior colliculus (sSC) occupies a critical node in the mammalian visual system; it is one of two major retinorecipient areas, receives visual cortical input, and innervates visual thalamocortical circuits. Nonetheless, the contribution of sSC neurons to downstream neural activity and visually guided behavior is unknown and frequently neglected. Here we identified the visual stimuli to which specific classes of sSC neurons respond, the downstream regions they target, and transgenic mice enabling class-specific manipulations. One class responds to small, slowly moving stimuli and projects exclusively to lateral posterior thalamus; another, comprising GABAergic neurons, responds to the sudden appearance or rapid movement of large stimuli and projects to multiple areas, including the lateral geniculate nucleus. A third class exhibits direction-selective responses and targets deeper SC layers. Together, our results show how specific sSC neurons represent and distribute diverse information and enable direct tests of their functional role.


Asunto(s)
Neuronas/clasificación , Neuronas/fisiología , Colículos Superiores/citología , Campos Visuales/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Animales , Channelrhodopsins , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas del GABA/farmacología , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Piridazinas/farmacología , Quinoxalinas/farmacología , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Valina/análogos & derivados , Valina/farmacología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
7.
Neuron ; 111(10): 1547-1563.e9, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37015225

RESUMEN

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Rodopsina , Ratones , Animales , Potenciales de Acción/fisiología , Rodopsina/genética , Neuronas/fisiología , Mutación/genética
8.
J Neurosci ; 31(34): 12218-28, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21865465

RESUMEN

Parallel circuits throughout the CNS exhibit distinct sensitivities and responses to sensory stimuli. Ambiguities in the source and properties of signals elicited by physiological stimuli, however, frequently obscure the mechanisms underlying these distinctions. We found that differences in the degree to which activity in two classes of Off retinal ganglion cell (RGC) encode information about light stimuli near detection threshold were not due to obvious differences in the cells' intrinsic properties or the chemical synaptic input the cells received; indeed, differences in the cells' light responses were largely insensitive to block of fast ionotropic glutamate receptors. Instead, the distinct responses of the two types of RGCs likely reflect differences in light-evoked electrical synaptic input. These results highlight a surprising strategy by which the retina differentially processes and routes visual information and provide new insight into the circuits that underlie responses to stimuli near detection threshold.


Asunto(s)
Sinapsis Eléctricas/fisiología , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Umbral Sensorial/fisiología , Transmisión Sináptica/fisiología , Visión Ocular/fisiología , Animales , Comunicación Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Técnicas de Cultivo de Órganos , Estimulación Luminosa/métodos , Receptores Ionotrópicos de Glutamato/antagonistas & inhibidores , Receptores Ionotrópicos de Glutamato/fisiología , Retina/citología , Células Ganglionares de la Retina/ultraestructura , Sensibilidad y Especificidad , Vías Visuales/fisiología
9.
Nat Neurosci ; 11(3): 318-26, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18223648

RESUMEN

Information about sensory stimuli is represented by spatiotemporal patterns of neural activity. The complexity of the central nervous system, however, frequently obscures the origin and properties of signals and noise that underlie these activity patterns. We minimized this constraint by examining mechanisms governing correlated activity in mouse retinal ganglion cells (RGCs) under conditions in which light-evoked responses traverse a specific circuit, the rod bipolar pathway. Signals and noise in this circuit produced correlated synaptic input to neighboring On and Off RGCs. Temporal modulation of light intensity did not alter the degree to which noise in the input to nearby RGCs was correlated, and action potential generation in individual RGCs was largely insensitive to differences in network noise generated by dynamic and static light stimuli. Together, these features enable noise in shared circuitry to diminish simultaneous action potential generation in neighboring On and Off RGCs under a variety of conditions.


Asunto(s)
Potenciales de Acción/fisiología , Células Amacrinas/fisiología , Interneuronas/fisiología , Inhibición Neural/fisiología , Células Ganglionares de la Retina/fisiología , Transmisión Sináptica/fisiología , Animales , Artefactos , Luz , Iluminación , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Técnicas de Cultivo de Órganos , Estimulación Luminosa , Tiempo de Reacción/fisiología , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Visión Ocular/fisiología
10.
Elife ; 112022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35060903

RESUMEN

Understanding cortical microcircuits requires thorough measurement of physiological properties of synaptic connections formed within and between diverse subclasses of neurons. Towards this goal, we combined spatially precise optogenetic stimulation with multicellular recording to deeply characterize intralaminar and translaminar monosynaptic connections to supragranular (L2/3) neurons in the mouse visual cortex. The reliability and specificity of multiphoton optogenetic stimulation were measured across multiple Cre lines, and measurements of connectivity were verified by comparison to paired recordings and targeted patching of optically identified presynaptic cells. With a focus on translaminar pathways, excitatory and inhibitory synaptic connections from genetically defined presynaptic populations were characterized by their relative abundance, spatial profiles, strength, and short-term dynamics. Consistent with the canonical cortical microcircuit, layer 4 excitatory neurons and interneurons within L2/3 represented the most common sources of input to L2/3 pyramidal cells. More surprisingly, we also observed strong excitatory connections from layer 5 intratelencephalic neurons and potent translaminar inhibition from multiple interneuron subclasses. The hybrid approach revealed convergence to and divergence from excitatory and inhibitory neurons within and across cortical layers. Divergent excitatory connections often spanned hundreds of microns of horizontal space. In contrast, divergent inhibitory connections were more frequently measured from postsynaptic targets near each other.


Asunto(s)
Optogenética/métodos , Fotones , Corteza Visual Primaria/fisiología , Células Piramidales/fisiología , Transmisión Sináptica/fisiología , Corteza Visual/fisiología , Potenciales de Acción , Animales , Encéfalo/citología , Encéfalo/fisiología , Línea Celular , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones , Reproducibilidad de los Resultados , Sinapsis/fisiología , Corteza Visual/citología
11.
J Neurosci ; 30(13): 4650-9, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20357115

RESUMEN

During night (i.e., scotopic) vision in mammals, rod photoreceptor output is conveyed to ganglion cells (GCs), the output cells of the retina, by a specialized neural circuit comprising rod bipolar (RB) and AII amacrine cells. Here, we examined how intrinsic postsynaptic conductances in AIIs contribute to transmission of rod-derived signals. Using paired recordings from synaptically coupled RBs and AIIs, we found that a voltage-gated Na conductance in AII amacrines accelerated EPSPs arising from RB synaptic input. EPSPs also could be amplified by the Na conductance when AIIs were hyperpolarized below resting membrane potential, thereby increasing the availability of Na channels. AII amacrines are coupled electrically, and coupled AII amacrines likely receive common input from individual RBs. Na channel-mediated effects on EPSPs, however, appeared to occur at the single-cell rather than the AII network level. By recording light-evoked synaptic currents from GCs, we determined that the Na channel-dependent acceleration, but not amplification, of RB output by AII amacrines is reflected in the dynamics of AII synaptic output to retinal ganglion cells: synaptic inputs to both ON and OFF GCs are slowed equivalently, although not attenuated in amplitude, when Na channels in AIIs are blocked. Thus, during scotopic vision, Na conductances in AIIs serve to accelerate RB output.


Asunto(s)
Células Amacrinas/fisiología , Luz , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Canales de Sodio/fisiología , Animales , Dendritas/fisiología , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Activación del Canal Iónico , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/fisiología , Transducción de Señal
12.
Elife ; 102021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33683198

RESUMEN

Fluorescent calcium indicators are often used to investigate neural dynamics, but the relationship between fluorescence and action potentials (APs) remains unclear. Most APs can be detected when the soma almost fills the microscope's field of view, but calcium indicators are used to image populations of neurons, necessitating a large field of view, generating fewer photons per neuron, and compromising AP detection. Here, we characterized the AP-fluorescence transfer function in vivo for 48 layer 2/3 pyramidal neurons in primary visual cortex, with simultaneous calcium imaging and cell-attached recordings from transgenic mice expressing GCaMP6s or GCaMP6f. While most APs were detected under optimal conditions, under conditions typical of population imaging studies, only a minority of 1 AP and 2 AP events were detected (often <10% and ~20-30%, respectively), emphasizing the limits of AP detection under more realistic imaging conditions.


Neurons, the cells that make up the nervous system, transmit information using electrical signals known as action potentials or spikes. Studying the spiking patterns of neurons in the brain is essential to understand perception, memory, thought, and behaviour. One way to do that is by recording electrical activity with microelectrodes. Another way to study neuronal activity is by using molecules that change how they interact with light when calcium binds to them, since changes in calcium concentration can be indicative of neuronal spiking. That change can be observed with specialized microscopes know as two-photon fluorescence microscopes. Using calcium indicators, it is possible to simultaneously record hundreds or even thousands of neurons. However, calcium fluorescence and spikes do not translate one-to-one. In order to interpret fluorescence data, it is important to understand the relationship between the fluorescence signals and the spikes associated with individual neurons. The only way to directly measure this relationship is by using calcium imaging and electrical recording simultaneously to record activity from the same neuron. However, this is extremely challenging experimentally, so this type of data is rare. To shed some light on this, Huang, Ledochowitsch et al. used mice that had been genetically modified to produce a calcium indicator in neurons of the visual cortex and simultaneously obtained both fluorescence measurements and electrical recordings from these neurons. These experiments revealed that, while the majority of time periods containing multi-spike neural activity could be identified using calcium imaging microscopy, on average, less than 10% of isolated single spikes were detectable. This is an important caveat that researchers need to take into consideration when interpreting calcium imaging results. These findings are intended to serve as a guide for interpreting calcium imaging studies that look at neurons in the mammalian brain at the population level. In addition, the data provided will be useful as a reference for the development of activity sensors, and to benchmark and improve computational approaches for detecting and predicting spikes.


Asunto(s)
Potenciales de Acción/fisiología , Proteínas de Unión al Calcio , Calcio , Colorantes Fluorescentes , Animales , Calcio/análisis , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Femenino , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Corteza Visual Primaria/citología , Corteza Visual Primaria/fisiología , Células Piramidales/citología , Células Piramidales/metabolismo
13.
Elife ; 102021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34387544

RESUMEN

The Patch-seq approach is a powerful variation of the patch-clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at scale, we identified and refined key factors that contribute to the efficient collection of high-quality data. We developed patch-clamp electrophysiology software with analysis functions specifically designed to automate acquisition with online quality control. We recognized the importance of extracting the nucleus for transcriptomic success and maximizing membrane integrity during nucleus extraction for morphology success. The protocol is generalizable to different species and brain regions, as demonstrated by capturing multimodal data from human and macaque brain slices. The protocol, analysis and acquisition software are compiled at https://githubcom/AllenInstitute/patchseqtools. This resource can be used by individual labs to generate data across diverse mammalian species and that is compatible with large publicly available Patch-seq datasets.


Asunto(s)
Fenómenos Electrofisiológicos , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Encéfalo , Humanos , Macaca mulatta , Ratones , Neuronas/citología , Neuronas/fisiología , Técnicas de Placa-Clamp , Programas Informáticos
14.
Elife ; 102021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34473054

RESUMEN

Abundant evidence supports the presence of at least three distinct types of thalamocortical (TC) neurons in the primate dorsal lateral geniculate nucleus (dLGN) of the thalamus, the brain region that conveys visual information from the retina to the primary visual cortex (V1). Different types of TC neurons in mice, humans, and macaques have distinct morphologies, distinct connectivity patterns, and convey different aspects of visual information to the cortex. To investigate the molecular underpinnings of these cell types, and how these relate to differences in dLGN between human, macaque, and mice, we profiled gene expression in single nuclei and cells using RNA-sequencing. These efforts identified four distinct types of TC neurons in the primate dLGN: magnocellular (M) neurons, parvocellular (P) neurons, and two types of koniocellular (K) neurons. Despite extensively documented morphological and physiological differences between M and P neurons, we identified few genes with significant differential expression between transcriptomic cell types corresponding to these two neuronal populations. Likewise, the dominant feature of TC neurons of the adult mouse dLGN is high transcriptomic similarity, with an axis of heterogeneity that aligns with core vs. shell portions of mouse dLGN. Together, these data show that transcriptomic differences between principal cell types in the mature mammalian dLGN are subtle relative to the observed differences in morphology and cortical projection targets. Finally, alignment of transcriptome profiles across species highlights expanded diversity of GABAergic neurons in primate versus mouse dLGN and homologous types of TC neurons in primates that are distinct from TC neurons in mouse.


Asunto(s)
Núcleo Celular/genética , Cuerpos Geniculados/metabolismo , Neuronas/metabolismo , Corteza Visual/metabolismo , Animales , Perfilación de la Expresión Génica , Humanos , Macaca , Ratones , RNA-Seq , Análisis de la Célula Individual , Tálamo/metabolismo , Vías Visuales/metabolismo
15.
Neuron ; 52(3): 511-24, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17088216

RESUMEN

Visual, auditory, somatosensory, and olfactory stimuli generate temporally precise patterns of action potentials (spikes). It is unclear, however, how the precision of spike generation relates to the pattern and variability of synaptic input elicited by physiological stimuli. We determined how synaptic conductances evoked by light stimuli that activate the rod bipolar pathway control spike generation in three identified types of mouse retinal ganglion cells (RGCs). The relative amplitude, timing, and impact of excitatory and inhibitory input differed dramatically between On and Off RGCs. Spikes evoked by repeated somatic injection of identical light-evoked synaptic conductances were more temporally precise than those evoked by light. However, the precision of spikes evoked by conductances that varied from trial to trial was similar to that of light-evoked spikes. Thus, the rod bipolar pathway modulates different RGCs via unique combinations of synaptic input, and RGC temporal variability reflects variability in the input this circuit provides.


Asunto(s)
Potenciales de Acción/fisiología , Células Ganglionares de la Retina/fisiología , Sinapsis/fisiología , Vías Visuales/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Técnicas de Placa-Clamp , Estimulación Luminosa/métodos , Sinapsis/efectos de la radiación , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de la radiación , Vías Visuales/efectos de la radiación
16.
Nat Neurosci ; 8(3): 354-64, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15696160

RESUMEN

Microcircuits composed of principal neuron and interneuron dendrites have an important role in shaping the representation of sensory information in the olfactory bulb. Here we establish the physiological features governing synaptic signaling in dendrodendritic microcircuits of olfactory bulb glomeruli. We show that dendritic gamma-aminobutyric acid (GABA) release from periglomerular neurons mediates inhibition of principal tufted cells, retrograde inhibition of sensory input and lateral signaling onto neighboring periglomerular cells. We find that L-type dendritic Ca(2+) spikes in periglomerular cells underlie dendrodendritic transmission by depolarizing periglomerular dendrites and activating P/Q type channels that trigger GABA release. Ca(2+) spikes in periglomerular cells are evoked by powerful excitatory inputs from a single principal cell, and glutamate release from the dendrites of single principal neurons activates a large ensemble of periglomerular cells.


Asunto(s)
Inhibición Neural/fisiología , Neuronas/fisiología , Bulbo Olfatorio/citología , Transducción de Señal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Valina/análogos & derivados , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Cadmio/farmacología , Calcio/metabolismo , Calcio/farmacología , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Señalización del Calcio/efectos de la radiación , Quelantes/farmacología , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/efectos de la radiación , Diagnóstico por Imagen/métodos , Dihidropiridinas/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Ácido Egtácico/farmacología , Estimulación Eléctrica/métodos , Antagonistas del GABA/farmacología , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/fisiología , Conducción Nerviosa/efectos de la radiación , Inhibición Neural/efectos de los fármacos , Redes Neurales de la Computación , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Níquel/farmacología , Nimodipina/farmacología , Técnicas de Placa-Clamp/métodos , Ácidos Fosfínicos/farmacología , Potasio/farmacología , Propanolaminas/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación , Tetrodotoxina/farmacología , Factores de Tiempo , Valina/farmacología
17.
Neuron ; 102(2): 477-492.e5, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30850257

RESUMEN

Higher-order thalamic nuclei, such as the visual pulvinar, play essential roles in cortical function by connecting functionally related cortical and subcortical brain regions. A coherent framework describing pulvinar function remains elusive because of its anatomical complexity and involvement in diverse cognitive processes. We combined large-scale anatomical circuit mapping with high-density electrophysiological recordings to dissect a homolog of the pulvinar in mice, the lateral posterior thalamic nucleus (LP). We define three broad LP subregions based on correspondence between connectivity and functional properties. These subregions form corticothalamic loops biased toward ventral or dorsal stream cortical areas and contain separate representations of visual space. Silencing the visual cortex or superior colliculus revealed that they drive visual tuning properties in separate LP subregions. Thus, by specifying the driving input sources, functional properties, and downstream targets of LP circuits, our data provide a roadmap for understanding the mechanisms of higher-order thalamic function in vision.


Asunto(s)
Pulvinar/fisiología , Colículos Superiores/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Mapeo Encefálico , Electroencefalografía , Ratones , Tálamo/fisiología
18.
Science ; 365(6454): 699-704, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31371562

RESUMEN

Genetically encoded voltage indicators (GEVIs) enable monitoring of neuronal activity at high spatial and temporal resolution. However, the utility of existing GEVIs has been limited by the brightness and photostability of fluorescent proteins and rhodopsins. We engineered a GEVI, called Voltron, that uses bright and photostable synthetic dyes instead of protein-based fluorophores, thereby extending the number of neurons imaged simultaneously in vivo by a factor of 10 and enabling imaging for significantly longer durations relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In the mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously over a 15-minute period of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.


Asunto(s)
Monitoreo Fisiológico/métodos , Neuroimagen/métodos , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Conducta Animal , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Ingeniería Genética , Larva , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Optogenética , Dominios Proteicos , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Natación , Pez Cebra
19.
Neuron ; 37(4): 639-47, 2003 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-12597861

RESUMEN

Cyclic nucleotide-gated channels (CNGCs) on the dendritic cilia of olfactory receptor neurons (ORNs) are critical for sensory transduction in the olfactory system. Do CNGCs also play a role in the axons and/or nerve terminals of ORNs? We find that the cyclic nucleotides cAMP and cGMP can both facilitate and depress synaptic transmission between olfactory nerve fibers and their targets in olfactory bulb glomeruli. Cyclic nucleotides increase intracellular Ca(2+) in ORN terminals and enhance spontaneous transmitter release; at higher concentrations, cyclic nucleotides depress evoked transmission by altering olfactory nerve excitability. Cyclic nucleotides have no effect on transmission or nerve excitability, however, in mice lacking olfactory CNGCs. Taken together, our results identify a novel role for presynaptic CNGCs in modulating neurotransmission.


Asunto(s)
GMP Cíclico/análogos & derivados , Canales Iónicos/metabolismo , Nucleótidos Cíclicos/metabolismo , Bulbo Olfatorio/fisiología , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Animales , Calcio/metabolismo , Colforsina/farmacología , GMP Cíclico/farmacología , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Agonistas del GABA/farmacología , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Ratones Endogámicos C57BL , Nucleótidos Cíclicos/farmacología , Bulbo Olfatorio/efectos de los fármacos , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos
20.
J Neurosci ; 26(27): 7201-11, 2006 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-16822977

RESUMEN

Transmission of visual signals at the first retinal synapse is associated with changes in calcium concentration in photoreceptors and bipolar cells. We investigated how loss of plasma membrane Ca2+ ATPase isoform 2 (PMCA2), the calcium transporter isoform with the highest affinity for Ca2+/calmodulin, affects transmission of rod- and cone-mediated responses. PMCA2 expression in the neuroblast layer was observed soon after birth; in the adult, PMCA2 was expressed in inner segments and synaptic terminals of rod photoreceptors, in rod bipolar cells, and in most inner retinal neurons but was absent from cones. To determine the role of PMCA2 in retinal signaling, we compared morphology and light responses of retinas from control mice and deafwaddler dfw2J mice, which lack functional PMCA2 protein. The cytoarchitecture of retinas from control and dfw2J mice was indistinguishable at the light microscope level. Suction electrode recordings revealed no difference in the sensitivity or amplitude of outer segment light responses of control and dfw2J rods. However, rod-mediated ERG b-wave responses in dfw2J mice were approximately 45% smaller and significantly slower than those of control mice. Furthermore, recordings from individual rod bipolar cells showed that the sensitivity of transmission at the rod output synapse was reduced by approximately 50%. No changes in the amplitude or timing of cone-mediated ERG responses were observed. These results suggest that PMCA2-mediated Ca2+ extrusion modulates the amplitude and timing of the high-sensitivity rod pathway to a much greater extent than that of the cone pathway.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Adaptación a la Oscuridad/fisiología , Retina/fisiología , Visión Ocular/fisiología , Animales , ATPasas Transportadoras de Calcio/genética , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Potenciales Evocados Visuales/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos CBA , Ratones Mutantes Neurológicos , Estimulación Luminosa , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Retina/citología , Retina/crecimiento & desarrollo , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA