Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 22(2): 681-689, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33325680

RESUMEN

We report here the first evidence for the interaction of poly(ethylene glycol) (PEG) with hyaluronan (HA) in aqueous solutions. PEG-HA complexes (Kapp = 45,000 ± 8000 M-1) contained about 3.3 ± 0.1 of ethylene glycol units per disaccharide of HA. The carboxyl of the D-glucuronic acid and the amide of the N-acetyl-D-glucosamine did not participate in PEG binding. Similar experiments performed with dextran and monosaccharides showed that multiple free primary hydroxyls regularly distributed along the polysaccharide chain are necessary for PEG binding. Another novelty of our study is contraction of HA upon PEG binding. The effect was observed with HA in solution or adsorbed on positively charged liposomes. The thickness of the HA layer on the liposomes decreased 2-fold upon PEG addition. HA compaction induced by PEG may underlie the changes in the plasma membrane properties and resealing of mechanical injuries induced by Pluronics.


Asunto(s)
Ácido Hialurónico , Polietilenglicoles , Glicol de Etileno , Liposomas , Agua
2.
Front Cell Dev Biol ; 11: 1060000, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960410

RESUMEN

Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin which accounts for 80% of brain tumors. Glioblastoma is characterized by astoundingly poor prognosis for patients; a combination of surgery, chemo- and radiotherapy used for clinical treatment of glioblastoma almost inevitably results in rapid relapse and development of more aggressive and therapy resistant tumor. Recently, it was demonstrated that extracellular vesicles produced by glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells and change their phenotype to more aggressive. GBM-EVs participate also in establishment of immune suppressive microenvironment that protects glioblastoma from antigen-specific recognition and killing by T cells. In this review, we collected present data concerning characterization of GBM-EVs and study of their effects on different populations of the immune cells (T cells, macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at critical analysis of experimental evidence in order to conclude whether glioblastoma-derived extracellular vesicles are a major factor in immune evasion of this deadly tumor. We summarized data concerning potential use of GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of approaches aimed at blocking of GBM-EVs production or their fusion with target cells for treatment of glioblastoma was analyzed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA