Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(10): 4651-4660, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765521

RESUMEN

Color discrimination in the vertebrate retina is mediated by a combination of spectrally distinct cone photoreceptors, each expressing one of multiple cone opsins. The opsin genes diverged early in vertebrate evolution into four classes maximally sensitive to varying wavelengths of light: UV (SWS1), blue (SWS2), green (RH2), and red (LWS) opsins. Although the tetrachromatic cone system is retained in most nonmammalian vertebrate lineages, the transcriptional mechanism underlying gene expression of the cone opsins remains elusive, particularly for SWS2 and RH2 opsins, both of which have been lost in the mammalian lineage. In zebrafish, which have all four cone subtypes, rh2 opsin gene expression depends on a homeobox transcription factor, sine oculis homeobox 7 (Six7). However, the six7 gene is found only in the ray-finned fish lineage, suggesting the existence of another evolutionarily conserved transcriptional factor(s) controlling rh2 opsin expression in vertebrates. Here, we found that the reduced rh2 expression caused by six7 deficiency was rescued by forced expression of six6b, which is a six7-related transcription factor conserved widely among vertebrates. The compensatory role of six6b was reinforced by ChIP-sequencing analysis, which revealed a similar pattern of Six6b- and Six7-binding sites within and near the cone opsin genes. TAL effector nuclease-induced genetic ablation of six6b and six7 revealed that they coordinately regulate SWS2 opsin gene expression. Mutant larvae deficient for these transcription factors showed severely impaired visually driven foraging behavior. These results demonstrate that in zebrafish, six6b and six7 govern expression of the SWS2 and RH2 opsins responsible for middle-wavelength sensitivity, which would be physiologically important for daylight vision.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Opsinas/metabolismo , Opsinas de Bastones/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Color , Visión de Colores , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Opsinas/genética , Opsinas de Bastones/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
2.
Nucleic Acids Res ; 45(11): 6945-6959, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28482099

RESUMEN

During 30S ribosomal subunit biogenesis, assembly factors are believed to prevent accumulation of misfolded intermediate states of low free energy that slowly convert into mature 30S subunits, namely, kinetically trapped particles. Among the assembly factors, the circularly permuted GTPase, RsgA, plays a crucial role in the maturation of the 30S decoding center. Here, directed hydroxyl radical probing and single particle cryo-EM are employed to elucidate RsgA΄s mechanism of action. Our results show that RsgA destabilizes the 30S structure, including late binding r-proteins, providing a structural basis for avoiding kinetically trapped assembly intermediates. Moreover, RsgA exploits its distinct GTPase pocket and specific interactions with the 30S to coordinate GTPase activation with the maturation state of the 30S subunit. This coordination validates the architecture of the decoding center and facilitates the timely release of RsgA to control the progression of 30S biogenesis.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , GTP Fosfohidrolasas/química , Dominio Catalítico , Microscopía por Crioelectrón , Activación Enzimática , Proteínas de Escherichia coli/fisiología , GTP Fosfohidrolasas/fisiología , Guanosina Trifosfato/química , Enlace de Hidrógeno , Hidrólisis , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades Ribosómicas Pequeñas Bacterianas
3.
BMC Biol ; 16(1): 45, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29690872

RESUMEN

BACKGROUND: Fear conditioning is a form of learning essential for animal survival and used as a behavioral paradigm to study the mechanisms of learning and memory. In mammals, the amygdala plays a crucial role in fear conditioning. In teleost, the medial zone of the dorsal telencephalon (Dm) has been postulated to be a homolog of the mammalian amygdala by anatomical and ablation studies, showing a role in conditioned avoidance response. However, the neuronal populations required for a conditioned avoidance response via the Dm have not been functionally or genetically defined. RESULTS: We aimed to identify the neuronal population essential for fear conditioning through a genetic approach in zebrafish. First, we performed large-scale gene trap and enhancer trap screens, and created transgenic fish lines that expressed Gal4FF, an engineered version of the Gal4 transcription activator, in specific regions in the brain. We then crossed these Gal4FF-expressing fish with the effector line carrying the botulinum neurotoxin gene downstream of the Gal4 binding sequence UAS, and analyzed the double transgenic fish for active avoidance fear conditioning. We identified 16 transgenic lines with Gal4FF expression in various brain areas showing reduced performance in avoidance responses. Two of them had Gal4 expression in populations of neurons located in subregions of the Dm, which we named 120A-Dm neurons. Inhibition of the 120A-Dm neurons also caused reduced performance in Pavlovian fear conditioning. The 120A-Dm neurons were mostly glutamatergic and had projections to other brain regions, including the hypothalamus and ventral telencephalon. CONCLUSIONS: Herein, we identified a subpopulation of neurons in the zebrafish Dm essential for fear conditioning. We propose that these are functional equivalents of neurons in the mammalian pallial amygdala, mediating the conditioned stimulus-unconditioned stimulus association. Thus, the study establishes a basis for understanding the evolutionary conservation and diversification of functional neural circuits mediating fear conditioning in vertebrates.


Asunto(s)
Miedo/fisiología , Neuronas/metabolismo , Telencéfalo/citología , Telencéfalo/metabolismo , Animales , Animales Modificados Genéticamente , Toxinas Botulínicas/metabolismo , Encéfalo/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Pez Cebra
4.
Proc Natl Acad Sci U S A ; 112(9): 2859-64, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691753

RESUMEN

Following their synthesis in the endoplasmic reticulum (ER), voltage-gated sodium channels (NaV) are transported to the membranes of excitable cells, where they often cluster, such as at the axon initial segment of neurons. Although the mechanisms by which NaV channels form and maintain clusters have been extensively examined, the processes that govern their transport and degradation have received less attention. Our entry into the study of these processes began with the isolation of a new allele of the zebrafish mutant alligator, which we found to be caused by mutations in the gene encoding really interesting new gene (RING) finger protein 121 (RNF121), an E3-ubiquitin ligase present in the ER and cis-Golgi compartments. Here we demonstrate that RNF121 facilitates two opposing fates of NaV channels: (i) ubiquitin-mediated proteasome degradation and (ii) membrane localization when coexpressed with auxiliary NaVß subunits. Collectively, these results indicate that RNF121 participates in the quality control of NaV channels during their synthesis and subsequent transport to the membrane.


Asunto(s)
Proteolisis , Dominios RING Finger , Ubiquitina-Proteína Ligasas/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Membrana Celular/genética , Membrana Celular/metabolismo , Datos de Secuencia Molecular , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas/fisiología , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Canales de Sodio Activados por Voltaje/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Hum Mol Genet ; 23(11): 2981-94, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24419318

RESUMEN

Mutations in the human CACNA1F gene cause incomplete congenital stationary night blindness type 2 (CSNB2), a non-progressive, clinically heterogeneous retinal disorder. However, the molecular mechanisms underlying CSNB2 have not been fully explored. Here, we describe the positional cloning of a blind zebrafish mutant, wait until dark (wud), which encodes a zebrafish homolog of human CACNA1F. We identified two zebrafish cacna1f paralogs and showed that the cacna1fa transcript (the gene mutated in wud) is expressed exclusively in the photoreceptor layer. We demonstrated that Cacna1fa localizes at the photoreceptor synapse and is absent from wud mutants. Electroretinograms revealed abnormal cone photoreceptor responses from wud mutants, indicating a defect in synaptic transmission. Although there are no obvious morphological differences, we found that wud mutants lacked synaptic ribbons and that wud is essential for the development of synaptic ribbons. We found that Ribeye, the most prominent synaptic ribbon protein, was less abundant and mislocalized in adult wud mutants. In addition to cloning wud, we identified synaptojanin 1 (synj1) as the defective gene in slacker (slak), a blind mutant with floating synaptic ribbons. We determined that Cacna1fa was expressed in slak photoreceptors and that Synj1 was initially expressed wud photoreceptors, but was absent by 5 days postfertilization. Collectively, our data demonstrate that Cacna1fa is essential for cone photoreceptor function and synaptic ribbon formation and reveal a previously unknown yet critical role of L-type voltage-dependent calcium channels in the expression and/or distribution of synaptic ribbon proteins, providing a new model to study the clinical variability in human CSNB2 patients.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/metabolismo , Ceguera Nocturna/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Sinapsis/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Adulto , Animales , Canales de Calcio Tipo L/genética , Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/embriología , Enfermedades Hereditarias del Ojo/genética , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/embriología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Masculino , Miopía/embriología , Miopía/genética , Ceguera Nocturna/embriología , Ceguera Nocturna/genética , Retina/embriología , Retina/metabolismo , Sinapsis/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
RNA ; 20(11): 1706-14, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25246654

RESUMEN

Messenger RNAs lacking a stop codon trap ribosomes at their 3' ends, depleting the pool of ribosomes available for protein synthesis. In bacteria, a remarkable quality control system rescues and recycles stalled ribosomes in a process known as trans-translation. Acting as a tRNA, transfer-messenger RNA (tmRNA) is aminoacylated, delivered by EF-Tu to the ribosomal A site, and accepts the nascent polypeptide. Translation then resumes on a reading frame within tmRNA, encoding a short peptide tag that targets the nascent peptide for degradation by proteases. One unsolved issue in trans-translation is how tmRNA and its protein partner SmpB preferentially recognize stalled ribosomes and not actively translating ones. Here, we examine the effect of the length of the 3' extension of mRNA on each step of trans-translation by pre-steady-state kinetic methods and fluorescence polarization binding assays. Unexpectedly, EF-Tu activation and GTP hydrolysis occur rapidly regardless of the length of the mRNA, although the peptidyl transfer to tmRNA decreases as the mRNA 3' extension increases and the tmRNA·SmpB binds less tightly to the ribosome with an mRNA having a long 3' extension. From these results, we conclude that the tmRNA·SmpB complex dissociates during accommodation due to competition between the downstream mRNA and the C-terminal tail for the mRNA channel. Rejection of the tmRNA·SmpB complex during accommodation is reminiscent of the rejection of near-cognate tRNA from the ribosome in canonical translation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Unión Proteica , Biosíntesis de Proteínas , Ribosomas/metabolismo
7.
Nucleic Acids Res ; 42(21): 13339-52, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25355516

RESUMEN

Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3' end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3' end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Cisteína/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutación , Unión Proteica , ARN Mensajero/química , Proteínas de Unión al ARN/genética , Ribosomas/química
8.
EMBO J ; 30(1): 104-14, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21102555

RESUMEN

RsgA is a 30S ribosomal subunit-binding GTPase with an unknown function, shortage of which impairs maturation of the 30S subunit. We identified multiple gain-of-function mutants of Escherichia coli rbfA, the gene for a ribosome-binding factor, that suppress defects in growth and maturation of the 30S subunit of an rsgA-null strain. These mutations promote spontaneous release of RbfA from the 30S subunit, indicating that cellular disorders upon depletion of RsgA are due to prolonged retention of RbfA on the 30S subunit. We also found that RsgA enhances release of RbfA from the mature 30S subunit in a GTP-dependent manner but not from a precursor form of the 30S subunit. These findings indicate that the function of RsgA is to release RbfA from the 30S subunit during a late stage of ribosome biosynthesis. This is the first example of the action of a GTPase on the bacterial ribosome assembly described at the molecular level.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , GTP Fosfohidrolasas/genética , Mutación , Unión Proteica , Proteínas Ribosómicas/genética
9.
Nucleic Acids Res ; 41(4): 2621-31, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23295668

RESUMEN

Deciphering the genetic code is a fundamental process in all living organisms. In many bacteria, AUA codons are deciphered by tRNA(Ile2) bearing lysidine (L) at the wobble position. L is a modified cytidine introduced post-transcriptionally by tRNA(Ile)-lysidine synthetase (TilS). Some bacteria, including Mycoplasma mobile, do not carry the tilS gene, indicating that they have established a different system to decode AUA codons. In this study, tRNA(Ile2) has been isolated from M. mobile and was found to contain a UAU anticodon without any modification. Mycoplasma mobile isoleucyl-tRNA synthetase (IleRS) recognized the UAU anticodon, whereas Escherichia coli IleRS did not efficiently aminoacylate tRNA(Ile2)(UAU). In M. mobile IleRS, a single Arg residue at position 865 was critical for specificity for the UAU anticodon and, when the corresponding site (W905) in E. coli IleRS was substituted with Arg, the W905R mutant efficiently aminoacylated tRNA with UAU anticodon. Mycoplasma mobile tRNA(Ile2) cannot distinguish between AUA and AUG codon on E. coli ribosome. However, on M. mobile ribosome, M. mobile tRNA(Ile2)(UAU) specifically recognized AUA codon, and not AUG codon, suggesting M. mobile ribosome has a property that prevents misreading of AUG codon. These findings provide an insight into the evolutionary reorganization of the AUA decoding system.


Asunto(s)
Anticodón/química , Codón/química , Isoleucina-ARNt Ligasa/química , Mycoplasma/genética , ARN de Transferencia de Isoleucina/química , Secuencia de Aminoácidos , Arginina/química , Isoleucina-ARNt Ligasa/metabolismo , Cinética , Datos de Secuencia Molecular , Mycoplasma/enzimología , ARN de Transferencia de Isoleucina/aislamiento & purificación , ARN de Transferencia de Isoleucina/metabolismo , Ribosomas/metabolismo , Alineación de Secuencia
10.
Nucleic Acids Res ; 41(4): 2609-20, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293003

RESUMEN

Ribosome biogenesis is a tightly regulated, multi-stepped process. The assembly of ribosomal subunits is a central step of the complex biogenesis process, involving nearly 30 protein factors in vivo in bacteria. Although the assembly process has been extensively studied in vitro for over 40 years, very limited information is known for the in vivo process and specific roles of assembly factors. Such an example is ribosome maturation factor M (RimM), a factor involved in the late-stage assembly of the 30S subunit. Here, we combined quantitative mass spectrometry and cryo-electron microscopy to characterize the in vivo 30S assembly intermediates isolated from mutant Escherichia coli strains with genes for assembly factors deleted. Our compositional and structural data show that the assembly of the 3'-domain of the 30S subunit is severely delayed in these intermediates, featured with highly underrepresented 3'-domain proteins and large conformational difference compared with the mature 30S subunit. Further analysis indicates that RimM functions not only to promote the assembly of a few 3'-domain proteins but also to stabilize the rRNA tertiary structure. More importantly, this study reveals intriguing similarities and dissimilarities between the in vitro and the in vivo assembly pathways, suggesting that they are in general similar but with subtle differences.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Proteínas Ribosómicas/fisiología , Subunidades Ribosómicas Pequeñas Bacterianas/química , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/genética , Eliminación de Gen , Modelos Moleculares , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
11.
Nature ; 456(7218): 102-6, 2008 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-18923391

RESUMEN

The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.


Asunto(s)
Memoria/fisiología , Neuronas/fisiología , Periodicidad , Pez Cebra/fisiología , Animales , Calcio/metabolismo , Condicionamiento Psicológico , Larva/fisiología , Estimulación Luminosa , Colículos Superiores/citología , Colículos Superiores/fisiología , Natación/fisiología , Cola (estructura animal)/fisiología , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
12.
Proc Natl Acad Sci U S A ; 108(13): 5425-30, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21383146

RESUMEN

Animal behaviors are generated by well-coordinated activation of neural circuits. In zebrafish, embryos start to show spontaneous muscle contractions at 17 to 19 h postfertilization. To visualize how motor circuits in the spinal cord are activated during this behavior, we developed GCaMP-HS (GCaMP-hyper sensitive), an improved version of the genetically encoded calcium indicator GCaMP, and created transgenic zebrafish carrying the GCaMP-HS gene downstream of the Gal4-recognition sequence, UAS (upstream activation sequence). Then we performed a gene-trap screen and identified the SAIGFF213A transgenic fish that expressed Gal4FF, a modified version of Gal4, in a subset of spinal neurons including the caudal primary (CaP) motor neurons. We conducted calcium imaging using the SAIGFF213A; UAS:GCaMP-HS double transgenic embryos during the spontaneous contractions. We demonstrated periodic and synchronized activation of a set of ipsilateral motor neurons located on the right and left trunk in accordance with actual muscle movements. The synchronized activation of contralateral motor neurons occurred alternately with a regular interval. Furthermore, a detailed analysis revealed rostral-to-caudal propagation of activation of the ipsilateral motor neuron, which is similar to but much slower than the rostrocaudal delay observed during swimming in later stages. Our study thus demonstrated coordinated activities of the motor neurons during the first behavior in a vertebrate. We propose the GCaMP technology combined with the Gal4FF-UAS system is a powerful tool to study functional neural circuits in zebrafish.


Asunto(s)
Calcio/metabolismo , Indicadores y Reactivos/metabolismo , Neuronas Motoras/fisiología , Médula Espinal/citología , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Actividad Motora/fisiología , Neuronas Motoras/citología , Contracción Muscular/fisiología , Pez Cebra/genética
13.
J Biol Chem ; 287(2): 1080-9, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22075003

RESUMEN

In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.


Asunto(s)
Conexinas/metabolismo , Proteínas Musculares/metabolismo , Mutación Missense , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Conexinas/genética , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica/genética , Datos de Secuencia Molecular , Fibras Musculares de Contracción Lenta , Proteínas Musculares/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
14.
Plant Cell Physiol ; 54(2): e6, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23299411

RESUMEN

The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics.


Asunto(s)
Bases de Datos Genéticas , Anotación de Secuencia Molecular , Oryza/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Genes de Plantas , Sitios Genéticos , Genómica/métodos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Oryza/clasificación , Filogenia , Polimorfismo de Nucleótido Simple , Motor de Búsqueda , Homología de Secuencia
15.
Nucleic Acids Res ; 39(Database issue): D210-3, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21071414

RESUMEN

We updated the tRNADB-CE by analyzing 939 complete and 1301 draft genomes of prokaryotes and eukaryotes, 171 complete virus genomes, 121 complete chloroplast genomes and approximately 230 million sequences obtained by metagenome analyses of 210 environmental samples. The 287 102 tRNA genes in total, and thus two times of the tRNA genes compiled previously, are compiled, in which sequence information, clover-leaf structure and results of sequence similarity and oligonucleotide-pattern search can be browsed. In order to pool collective knowledge with help from any experts in the tRNA research field, we included a column to which comments can be added on each tRNA gene. By compiling tRNAs of known prokaryotes with identical sequences, we found high phylogenetic preservation of tRNA sequences, especially at a phylum level. Furthermore, a large number of tRNAs obtained by metagenome analyses of environmental samples had sequences identical to those found in known prokaryotes. The identical sequence group, therefore, can be used as phylogenetic markers to clarify the microbial community structure of an ecosystem. The updated tRNADB-CE provided functions, with which users can obtain the phylotype-specific markers (e.g. genus-specific markers) by themselves and clarify microbial community structures of ecosystems in detail. tRNADB-CE can be accessed freely at http://trna.nagahama-i-bio.ac.jp.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN de Transferencia/genética , Genes , Genómica , Metagenómica , Filogenia , ARN de Transferencia/química , ARN de Transferencia/clasificación , Análisis de Secuencia de ADN
16.
RNA ; 16(5): 980-90, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20348441

RESUMEN

Trans-translation relieves a stalled translation on the bacterial ribosome by transfer-messenger RNA (tmRNA) with the help of SmpB, an essential cofactor of tmRNA. Here, we examined the role of the unstructured C-terminal tail of SmpB using an in vitro trans-translation system. It was found that truncation of the C-terminal tail or substitution of tryptophan residue at 147 in the middle of the C-terminal tail affected the activity in the early stage of trans-translation. Our investigations also revealed that the C-terminal tail is not required for the events until GTP is hydrolyzed by EF-Tu in complex with tmRNA-SmpB. A synthetic peptide corresponding to the C-terminal tail of SmpB inhibited peptidyl-transfer of alanyl-tmRNA and A-site binding of SmpB, but not GTP hydrolysis. These results suggest that the C-terminal tail has a role in the step of accommodation of alanyl-tmRNA-SmpB into the A-site. Directed hydroxyl radical probing indicated that tryptophan residue at 147 is located just downstream of the decoding center in the mRNA path when SmpB is in the A-site.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Guanosina Trifosfato/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Factor Tu de Elongación Peptídica/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Estructura Terciaria de Proteína , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , Eliminación de Secuencia , Triptófano/química
17.
Nucleic Acids Res ; 38(17): 5909-18, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20460460

RESUMEN

CeR-2 RNA is one of the newly identified Caenorhabditis elegans noncoding RNAs (ncRNAs). The characterization of CeR-2 by RNomic studies has failed to classify it into any known ncRNA family. In this study, we examined the spatiotemporal expression patterns of CeR-2 to gain insight into its function. CeR-2 is expressed in most cells from the early embryo to adult stages. The subcellular localization of this RNA is analogous to that of fibrillarin, a major protein of the nucleolus. It was observed that knockdown of C/D small nucleolar ribonucleoproteins (snoRNPs), but not of H/ACA snoRNPs, resulted in the aberrant nucleolar localization of CeR-2 RNA. A mutant worm with a reduced amount of cellular CeR-2 RNA showed changes in its pre-rRNA processing pattern compared with that of the wild-type strain N2. These results suggest that CeR-2 RNA is a C/D snoRNA involved in the processing of rRNAs.


Asunto(s)
Caenorhabditis elegans/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/metabolismo , Datos de Secuencia Molecular , Mutación , Precursores del ARN/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/aislamiento & purificación , Ribonucleoproteínas Nucleolares Pequeñas/genética , Alineación de Secuencia
18.
J Biochem ; 171(4): 459-465, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35081614

RESUMEN

A tRNA-like sequence conserved in the genomes of all Escherichia coli strains was found. The sequence resembles arginine-tRNA, which is present in E. coli pathogenic islands and phages. Expression experiments revealed that this sequence is a part of a leaderless mRNA encoding a short peptide (60 amino acids: XtpA). A deletion mutant of this gene is more sensitive than wild-type cell to several aminoglycoside antibiotics at low concentrations. Further analyses indicated that XtpA positively regulates the expression of GcvB small RNA, which is involved in the intrinsic resistance to aminoblycosides in E. coli.


Asunto(s)
Escherichia coli , ARN Bacteriano , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
19.
RNA ; 15(9): 1766-74, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19620234

RESUMEN

RsgA is a unique GTP hydrolytic protein in which GTPase activity is significantly enhanced by the small ribosomal subunit. Deletion of RsgA causes slow cell growth as well as defects in subunit assembly of the ribosome and 16S rRNA processing, suggesting its involvement in maturation of the small subunit. In this study, we found that removal of RsgA or inactivation of its ribosome small subunit-dependent GTPase activity provides Escherichia coli cells with resistance to high salt stress. Salt stress suppressed the defects in subunit assembly of the ribosome and processing of 16S rRNA as well as truncation of the 3' end of 16S rRNA in RsgA-deletion cells. In contrast, salt stress transiently impaired subunit assembly of the ribosome and processing of 16S rRNA and induced 3' truncation of 16S rRNA in wild-type cells. These results suggest that the action of RsgA on the ribosome, which usually facilitates maturation of the small subunit, disturbs it under a salt stress condition. Consistently, there was a drastic but transient decrease in the intracellular amount of RsgA after salt shock. Salt shock would make the pathway of maturation of the ribosome small subunit RsgA independent.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , GTP Fosfohidrolasas/genética , Subunidades Ribosómicas Pequeñas/metabolismo , Tolerancia a la Sal/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/fisiología , Eliminación de Gen , Mutación/fisiología , Ribosomas/metabolismo , Estrés Fisiológico/fisiología
20.
Nucleic Acids Res ; 37(Database issue): D163-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18842632

RESUMEN

We constructed a new large-scale database of tRNA genes by analyzing 534 complete genomes of prokaryotes and 394 draft genomes in WGS (Whole Genome Shotgun) division in DDBJ/EMBL/GenBank and approximately 6.2 million DNA fragment sequences obtained from metagenomic analyses. This exhaustive search for tRNA genes was performed by running three computer programs to enhance completeness and accuracy of the prediction. Discordances of assignment among three programs were found for approximately 4% of the total of tRNA gene candidates obtained from these prokaryote genomes analyzed. The discordant cases were manually checked by experts in the tRNA experimental field. In total, 144,061 tRNA genes were registered in the database 'tRNADB-CE', and the number of the genes was more than four times of that of the genes previously reported by the database from analyses of complete genomes with tRNAscan-SE program. The tRNADB-CE allows for browsing sequence information, cloverleaf structures and results of similarity searches among all tRNA genes. For each of the complete genomes, the number of tRNA genes for individual anticodons and the codon usage frequency in all protein genes and the positioning of individual tRNA genes in each genome can be browsed. tRNADB-CE can be accessed freely at http://trna.nagahama-i-bio.ac.jp.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genes Arqueales , Genes Bacterianos , ARN de Transferencia/genética , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA