Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2203039119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191210

RESUMEN

Recollection of one's personal past, or autobiographical memory (AM), varies across individuals and across the life span. This manifests in the amount of episodic content recalled during AM, which may reflect differences in associated functional brain networks. We take an individual differences approach to examine resting-state functional connectivity of temporal lobe regions known to coordinate AM content retrieval with the default network (anterior and posterior hippocampus, temporal pole) and test for associations with AM. Multiecho resting-state functional magnetic resonance imaging (fMRI) and autobiographical interviews were collected for 158 younger and 105 older healthy adults. Interviews were scored for internal (episodic) and external (semantic) details. Age group differences in connectivity profiles revealed that older adults had lower connectivity within anterior hippocampus, posterior hippocampus, and temporal pole but greater connectivity with regions across the default network compared with younger adults. This pattern was positively related to posterior hippocampal volumes in older adults, which were smaller than younger adult volumes. Connectivity associations with AM showed two significant patterns. The first dissociated connectivity related to internal vs. external AM across participants. Internal AM was related to anterior hippocampus and temporal pole connectivity with orbitofrontal cortex and connectivity within posterior hippocampus. External AM was related to temporal pole connectivity with regions across the lateral temporal cortex. In the second pattern, younger adults displayed temporal pole connectivity with regions throughout the default network associated with more detailed AMs overall. Our findings provide evidence for discrete ensembles of brain regions that scale with systematic variation in recollective styles across the healthy adult life span.


Asunto(s)
Memoria Episódica , Anciano , Mapeo Encefálico , Hipocampo/diagnóstico por imagen , Humanos , Individualidad , Imagen por Resonancia Magnética , Lóbulo Temporal/diagnóstico por imagen
2.
J Neurophysiol ; 132(2): 375-388, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958281

RESUMEN

The default network is widely implicated as a common neural substrate for self-generated thought, such as remembering one's past (autobiographical memory) and imagining the thoughts and feelings of others (theory of mind). Findings that the default network comprises subnetworks of regions, some commonly and some distinctly involved across processes, suggest that one's own experiences inform their understanding of others. With the advent of precision functional MRI (fMRI) methods, however, it is unclear if this shared substrate is observed instead due to traditional group analysis methods. We investigated this possibility using a novel combination of methodological strategies. Twenty-three participants underwent multi-echo resting-state and task fMRI. We used their resting-state scans to conduct cortical parcellation sensitive to individual variation while preserving our ability to conduct group analysis. Using multivariate analyses, we assessed the functional activation and connectivity profiles of default network regions while participants engaged in autobiographical memory, theory of mind, or a sensorimotor control condition. Across the default network, we observed stronger activity associated with both autobiographical memory and theory of mind compared to the control condition. Nonetheless, we also observed that some regions showed preferential activity to either experimental condition, in line with past work. The connectivity results similarly indicated shared and distinct functional profiles. Our results support that autobiographical memory and theory of mind, two theoretically important and widely studied domains of social cognition, evoke common and distinct aspects of the default network even when ensuring high fidelity to individual-specific characteristics.NEW & NOTEWORTHY We used cutting-edge precision functional MRI (fMRI) methods such as multi-echo fMRI acquisition and denoising, a robust experimental paradigm, and individualized cortical parcellation across 23 participants to provide evidence that remembering one's past experiences and imagining the thoughts and feelings of others share a common neural substrate. Evidence from activation and connectivity analyses indicate overlapping and distinct functional profiles of these widely studied episodic and social processes.


Asunto(s)
Red en Modo Predeterminado , Imagen por Resonancia Magnética , Memoria Episódica , Teoría de la Mente , Humanos , Masculino , Femenino , Adulto , Teoría de la Mente/fisiología , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Adulto Joven , Mapeo Encefálico , Conectoma
3.
Neuroimage ; 272: 120081, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37011715

RESUMEN

Conscientiousness, and related constructs impulsivity and self-control, have been related to structural and functional properties of regions in the prefrontal cortex (PFC) and anterior insula. Network-based conceptions of brain function suggest that these regions belong to a single large-scale network, labeled the salience/ventral attention network (SVAN). The current study tested associations between conscientiousness and resting-state functional connectivity in this network using two community samples (N's = 244 and 239) and data from the Human Connectome Project (N = 1000). Individualized parcellation was used to improve functional localization accuracy and facilitate replication. Functional connectivity was measured using an index of network efficiency, a graph theoretical measure quantifying the capacity for parallel information transfer within a network. Efficiency of a set of parcels in the SVAN was significantly associated with conscientiousness in all samples. Findings are consistent with a theory of conscientiousness as a function of variation in neural networks underlying effective prioritization of goals.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Humanos , Vías Nerviosas , Mapeo Encefálico
4.
Cereb Cortex ; 33(1): 114-134, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35231927

RESUMEN

The intrinsic functional organization of the brain changes into older adulthood. Age differences are observed at multiple spatial scales, from global reductions in modularity and segregation of distributed brain systems, to network-specific patterns of dedifferentiation. Whether dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed, experience-dependent changes, or both, is uncertain. We employed a multimethod strategy to interrogate dedifferentiation at multiple spatial scales. Multi-echo (ME) resting-state fMRI was collected in younger (n = 181) and older (n = 120) healthy adults. Cortical parcellation sensitive to individual variation was implemented for precision functional mapping of each participant while preserving group-level parcel and network labels. ME-fMRI processing and gradient mapping identified global and macroscale network differences. Multivariate functional connectivity methods tested for microscale, edge-level differences. Older adults had lower BOLD signal dimensionality, consistent with global network dedifferentiation. Gradients were largely age-invariant. Edge-level analyses revealed discrete, network-specific dedifferentiation patterns in older adults. Visual and somatosensory regions were more integrated within the functional connectome; default and frontoparietal control network regions showed greater connectivity; and the dorsal attention network was more integrated with heteromodal regions. These findings highlight the importance of multiscale, multimethod approaches to characterize the architecture of functional brain aging.


Asunto(s)
Encéfalo , Conectoma , Humanos , Anciano , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Imagen por Resonancia Magnética , Envejecimiento , Incertidumbre , Mapeo Encefálico/métodos , Red Nerviosa
5.
Neuroimage ; 227: 117666, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33359341

RESUMEN

Social exclusion refers to the experience of being disregarded or rejected by others and has wide-ranging negative consequences for well-being and cognition. Cyberball, a game where a ball is virtually tossed between players, then leads to the exclusion of the research participant, is a common method used to examine the experience of social exclusion. The neural correlates of social exclusion remain a topic of debate, particularly with regards to the role of the dorsal anterior cingulate cortex (dACC) and the concept of social pain. Here we conducted a quantitative meta-analysis using activation likelihood estimation (ALE) to identify brain activity reliably engaged by social exclusion during Cyberball task performance (Studies = 53; total N = 1,817 participants). Results revealed consistent recruitment in ventral anterior cingulate and posterior cingulate cortex, inferior and superior frontal gyri, posterior insula, and occipital pole. No reliable activity was observed in dACC. Using a probabilistic atlas to define dACC, fewer than 15% of studies reported peak coordinates in dACC. Meta-analytic connectivity mapping suggests patterns of co-activation are consistent with the topography of the default network. Reverse inference for cognition associated with reliable Cyberball activity computed in Neurosynth revealed social exclusion to be associated with cognitive terms Social, Autobiographical, Mental States, and Theory of Mind. Taken together, these findings highlight the role of the default network in social exclusion and warns against interpretations of the dACC as a key region involved in the experience of social exclusion in humans.


Asunto(s)
Encéfalo/fisiología , Red en Modo Predeterminado/fisiología , Aislamiento Social , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Distancia Psicológica
6.
Neuroimage ; 237: 118149, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991695

RESUMEN

Neuronal variability patterns promote the formation and organization of neural circuits. Macroscale similarities in regional variability patterns may therefore be linked to the strength and topography of inter-regional functional connections. To assess this relationship, we used multi-echo resting-state fMRI and investigated macroscale connectivity-variability associations in 154 adult humans (86 women; mean age = 22yrs). We computed inter-regional measures of moment-to-moment BOLD signal variability and related them to inter-regional functional connectivity. Region pairs that showed stronger functional connectivity also showed similar BOLD signal variability patterns, independent of inter-regional distance and structural similarity. Connectivity-variability associations were predominant within all networks and followed a hierarchical spatial organization that separated sensory, motor and attention systems from limbic, default and frontoparietal control association networks. Results were replicated in a second held-out fMRI run. These findings suggest that macroscale BOLD signal variability is an organizational feature of large-scale functional networks, and shared inter-regional BOLD signal variability may underlie macroscale brain network dynamics.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
7.
PLoS Biol ; 13(12): e1002308, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26629746

RESUMEN

The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination.


Asunto(s)
Corteza Auditiva/fisiología , Conducta Animal , Aprendizaje Discriminativo , Generalización de la Respuesta , Instinto , Interneuronas/fisiología , Modelos Neurológicos , Estimulación Acústica , Animales , Corteza Auditiva/efectos de la radiación , Conducta Animal/efectos de la radiación , Biomarcadores/metabolismo , Condicionamiento Clásico , Condicionamiento Operante , Aprendizaje Discriminativo/efectos de la radiación , Generalización de la Respuesta/efectos de la radiación , Interneuronas/efectos de la radiación , Luz , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Parvalbúminas/genética , Parvalbúminas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
8.
Cereb Cortex ; 27(3): 2385-2402, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27095823

RESUMEN

Natural sounds exhibit statistical variation in their spectrotemporal structure. This variation is central to identification of unique environmental sounds and to vocal communication. Using limited resources, the auditory system must create a faithful representation of sounds across the full range of variation in temporal statistics. Imaging studies in humans demonstrated that the auditory cortex is sensitive to temporal correlations. However, the mechanisms by which the auditory cortex represents the spectrotemporal structure of sounds and how neuronal activity adjusts to vastly different statistics remain poorly understood. In this study, we recorded responses of neurons in the primary auditory cortex of awake rats to sounds with systematically varied temporal correlation, to determine whether and how this feature alters sound encoding. Neuronal responses adapted to changing stimulus temporal correlation. This adaptation was mediated by a change in the firing rate gain of neuronal responses rather than their spectrotemporal properties. This gain adaptation allowed neurons to maintain similar firing rates across stimuli with different statistics, preserving their ability to efficiently encode temporal modulation. This dynamic gain control mechanism may underlie comprehension of vocalizations and other natural sounds under different contexts, subject to distortions in temporal correlation structure via stretching or compression.


Asunto(s)
Adaptación Fisiológica/fisiología , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Neuronas/fisiología , Estimulación Acústica/métodos , Potenciales de Acción , Animales , Electrodos Implantados , Modelos Lineales , Masculino , Dinámicas no Lineales , Ratas Long-Evans , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
9.
J Neurophysiol ; 114(5): 2726-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26311178

RESUMEN

An essential task of the auditory system is to discriminate between different communication signals, such as vocalizations. In everyday acoustic environments, the auditory system needs to be capable of performing the discrimination under different acoustic distortions of vocalizations. To achieve this, the auditory system is thought to build a representation of vocalizations that is invariant to their basic acoustic transformations. The mechanism by which neuronal populations create such an invariant representation within the auditory cortex is only beginning to be understood. We recorded the responses of populations of neurons in the primary and nonprimary auditory cortex of rats to original and acoustically distorted vocalizations. We found that populations of neurons in the nonprimary auditory cortex exhibited greater invariance in encoding vocalizations over acoustic transformations than neuronal populations in the primary auditory cortex. These findings are consistent with the hypothesis that invariant representations are created gradually through hierarchical transformation within the auditory pathway.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Neuronas/fisiología , Vocalización Animal/fisiología , Potenciales de Acción , Animales , Masculino , Ratas , Ratas Long-Evans , Espectrografía del Sonido
10.
Nat Commun ; 15(1): 7781, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237568

RESUMEN

During conversation, people often endeavor to convey information in an understandable way (finding common ground) while also sharing novel or surprising information (exploring new ground). Here, we test how friends and strangers balance these two strategies to connect with each other. Using fMRI hyperscanning, we measure a preference for common ground as convergence over time and exploring new ground as divergence over time by tracking dyads' neural and linguistic trajectories over the course of semi-structured intimacy-building conversations. In our study, 60 dyads (30 friend dyads) engaged in a real-time conversation with discrete prompts and demarcated turns. Our analyses reveal that friends diverge neurally and linguistically: their neural patterns become more dissimilar over time and they explore more diverse topics. In contrast, strangers converge: neural patterns and language become more similar over time. The more a conversation between strangers resembles the exploratory conversations of friends, the more they enjoy it. Our results highlight exploring new ground as a strategy for a successful conversation.


Asunto(s)
Comunicación , Amigos , Imagen por Resonancia Magnética , Humanos , Masculino , Amigos/psicología , Femenino , Adulto , Adulto Joven , Relaciones Interpersonales , Lenguaje , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
11.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479810

RESUMEN

Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.


Asunto(s)
Envejecimiento Saludable , Memoria Episódica , Humanos , Anciano , Adulto Joven , Adulto , Mapeo Encefálico , Corteza Prefrontal/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Imagen por Resonancia Magnética
12.
Netw Neurosci ; 7(2): 496-521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397888

RESUMEN

Loneliness is associated with differences in resting-state functional connectivity (RSFC) within and between large-scale networks in early- and middle-aged adult cohorts. However, age-related changes in associations between sociality and brain function into late adulthood are not well understood. Here, we examined age differences in the association between two dimensions of sociality-loneliness and empathic responding-and RSFC of the cerebral cortex. Self-report measures of loneliness and empathy were inversely related across the entire sample of younger (mean age = 22.6y, n = 128) and older (mean age = 69.0y, n = 92) adults. Using multivariate analyses of multi-echo fMRI RSFC, we identified distinct functional connectivity patterns for individual and age group differences associated with loneliness and empathic responding. Loneliness in young and empathy in both age groups was related to greater visual network integration with association networks (e.g., default, fronto-parietal control). In contrast, loneliness was positively related to within- and between-network integration of association networks for older adults. These results extend our previous findings in early- and middle-aged cohorts, demonstrating that brain systems associated with loneliness, as well as empathy, differ in older age. Further, the findings suggest that these two aspects of social experience engage different neurocognitive processes across human life-span development.

13.
Sci Rep ; 13(1): 20501, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993522

RESUMEN

Evidence on the harms and benefits of social media use is mixed, in part because the effects of social media on well-being depend on a variety of individual difference moderators. Here, we explored potential neural moderators of the link between time spent on social media and subsequent negative affect. We specifically focused on the strength of correlation among brain regions within the frontoparietal system, previously associated with the top-down cognitive control of attention and emotion. Participants (N = 54) underwent a resting state functional magnetic resonance imaging scan. Participants then completed 28 days of ecological momentary assessment and answered questions about social media use and negative affect, twice a day. Participants who spent more than their typical amount of time on social media since the previous time point reported feeling more negative at the present moment. This within-person temporal association between social media use and negative affect was mainly driven by individuals with lower resting state functional connectivity within the frontoparietal system. By contrast, time spent on social media did not predict subsequent affect for individuals with higher frontoparietal functional connectivity. Our results highlight the moderating role of individual functional neural connectivity in the relationship between social media and affect.


Asunto(s)
Medios de Comunicación Sociales , Humanos , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Emociones , Imagen por Resonancia Magnética/métodos , Afecto , Vías Nerviosas
14.
Neurobiol Aging ; 112: 170-180, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35219126

RESUMEN

White matter hyperintensities (WMH) are among the most prominent structural changes observed in older adulthood. These changes coincide with functional changes to the intrinsic network organization of the aging brain. Yet little is known about how WMH are associated with changes to the whole-brain functional connectome in normal aging. We used a lesion prediction algorithm to quantify WMH as well as resting-state multiecho functional magnetic resonance imaging to characterize resting-state functional connectivity in a cross-sectional sample of healthy older adults (N = 105, 60-83 years of age). In a multivariate analysis, we found that higher lesion load was associated with a global pattern of network dedifferentiation, marked by lower within- and greater between- network connectivity. Network specific changes included greater visual network integration and greater posterior-anterior connectivity. The relationship between WMH and resting-state functional connectivity was negatively associated with fluid IQ as well as Blood Oxygen Level Dependent signal dimensionality. Reduced functional network segregation is a widely observed pattern of age-related change. Our findings show that these functional changes are associated with the accumulation of WMH in older adulthood.


Asunto(s)
Conectoma , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen
15.
Sci Data ; 9(1): 119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351925

RESUMEN

Central to understanding human behavior is a comprehensive mapping of brain-behavior relations within the context of lifespan development. Reproducible discoveries depend upon well-powered samples of reliable data. We provide to the scientific community two, 10-minute, multi-echo functional MRI (ME-fMRI) runs, and structural MRI (T1-MPRAGE), from 181 healthy younger (ages 18-34 y) and 120 older adults (ages 60-89 y). T2-FLAIR MRIs and behavioral assessments are available in a majority subset of over 250 participants. Behavioral assessments include fluid and crystallized cognition, self-reported measures of personality, and socioemotional functioning. Initial quality control and validation of these data is provided. This dataset will be of value to scientists interested in BOLD signal specifically isolated from ME-fMRI, individual differences in brain-behavioral associations, and cross-sectional aging effects in healthy adults. Demographic and behavioral data are available within the Open Science Framework project "Goal-Directed Cognition in Older and Younger Adults" ( http://osf.io/yhzxe/ ), which will be augmented over time; neuroimaging data are available on OpenNeuro ( https://openneuro.org/datasets/ds003592 ).


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Neuroimagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Humanos , Persona de Mediana Edad , Adulto Joven
16.
Psychol Aging ; 36(8): 902-916, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34472915

RESUMEN

Positions of power involving moral decision-making are often held by older adults (OAs). However, little is known about age differences in moral decision-making and the intrinsic organization of the aging brain. In this study, younger adults (YAs; n = 117, Mage = 22.11) and OAs (n = 82, Mage = 67.54) made decisions in hypothetical moral dilemmas and completed resting-state multi-echo functional magnetic resonance imaging (fMRI) scans. Relative to YAs, OAs were more likely to endorse deontological decisions (i.e., decisions based on adherence to a moral principle or duty), but only when the choice was immediately compelling or intuitive. By contrast, there was no difference between YAs and OAs in utilitarian decisions (i.e., decisions aimed at maximizing collective well-being) when the utilitarian choice was intuitive. Enhanced connections between the posterior medial core of the default network (pmDN) and the dorsal attention network, and overall reduced segregation of pmDN from the rest of the brain, were associated with this increased deontological-intuitive moral decision-making style in OAs. The present study contributes to our understanding of age differences in decision-making styles by taking into account the intuitiveness of the moral choice, and it offers further insights as to how age differences in intrinsic brain connectivity relate to these distinct moral decision-making styles in YAs and OAs. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Asunto(s)
Envejecimiento , Juicio , Anciano , Encéfalo/diagnóstico por imagen , Toma de Decisiones , Humanos , Imagen por Resonancia Magnética , Principios Morales
17.
Nat Commun ; 11(1): 6393, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319780

RESUMEN

Humans survive and thrive through social exchange. Yet, social dependency also comes at a cost. Perceived social isolation, or loneliness, affects physical and mental health, cognitive performance, overall life expectancy, and increases vulnerability to Alzheimer's disease-related dementias. Despite severe consequences on behavior and health, the neural basis of loneliness remains elusive. Using the UK Biobank population imaging-genetics cohort (n = ~40,000, aged 40-69 years when recruited, mean age = 54.9), we test for signatures of loneliness in grey matter morphology, intrinsic functional coupling, and fiber tract microstructure. The loneliness-linked neurobiological profiles converge on a collection of brain regions known as the 'default network'. This higher associative network shows more consistent loneliness associations in grey matter volume than other cortical brain networks. Lonely individuals display stronger functional communication in the default network, and greater microstructural integrity of its fornix pathway. The findings fit with the possibility that the up-regulation of these neural circuits supports mentalizing, reminiscence and imagination to fill the social void.


Asunto(s)
Encéfalo/fisiología , Aislamiento Social/psicología , Red Social , Adulto , Anciano , Enfermedad de Alzheimer/psicología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Fórnix , Sustancia Gris/fisiología , Humanos , Soledad/psicología , Masculino , Salud Mental , Persona de Mediana Edad , Modelos Biológicos
18.
Soc Cogn Affect Neurosci ; 14(4): 423-433, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30924854

RESUMEN

Social relationships imbue life with meaning, whereas loneliness diminishes one's sense of meaning in life. Yet the extent of interdependence between these psychological constructs remains poorly understood. We took a multivariate network approach to examine resting-state fMRI functional connectivity's association with loneliness and meaning in a large cohort of adults (N = 942). Loneliness and meaning in life were negatively correlated with one another. In their relationship with individually parcelled whole-brain measures of functional connectivity, a significant and reliable pattern was observed. Greater loneliness was associated with dense, and less modular, connections between default, frontoparietal, attention and perceptual networks. A greater sense of life meaning was associated with increased, and more modular, connectivity between default and limbic networks. Low loneliness was associated with more modular brain connectivity, and lower life meaning was associated with higher between-network connectivity. These findings advance our understanding of loneliness and life meaning as distinct, yet interdependent, features of sociality. The results highlight a potential role of the default network as a central hub, providing a putative neural mechanism for shifting between feelings of isolation and purpose.


Asunto(s)
Encéfalo/diagnóstico por imagen , Soledad , Red Nerviosa/diagnóstico por imagen , Adulto , Atención/fisiología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA