Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3162, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672293

RESUMEN

Self-assembly and fibril formation play important roles in protein behaviour. Amyloid fibril formation is well-studied due to its role in neurodegenerative diseases and characterized by refolding of the protein into predominantly ß-sheet form. However, much less is known about the assembly of proteins into other types of supramolecular structures. Using cryo-electron microscopy at a resolution of 1.97 Å, we show that a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembles into helical non-amyloid fibrils. The in vitro anti-microbial activity was determined and shown to be enhanced compared to the wildtype. Plectasin contains a cysteine-stabilised α-helix-ß-sheet structure, which remains intact upon fibril formation. Two protofilaments form a right-handed protein fibril. The fibril formation is reversible and follows sigmoidal kinetics with a pH- and concentration dependent equilibrium between soluble monomer and protein fibril. This high-resolution structure reveals that α/ß proteins can natively assemble into fibrils.


Asunto(s)
Amiloide , Péptidos , Amiloide/metabolismo , Microscopía por Crioelectrón , Defensinas , Concentración de Iones de Hidrógeno
2.
Nature ; 437(7061): 975-80, 2005 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-16222292

RESUMEN

Animals and higher plants express endogenous peptide antibiotics called defensins. These small cysteine-rich peptides are active against bacteria, fungi and viruses. Here we describe plectasin-the first defensin to be isolated from a fungus, the saprophytic ascomycete Pseudoplectania nigrella. Plectasin has primary, secondary and tertiary structures that closely resemble those of defensins found in spiders, scorpions, dragonflies and mussels. Recombinant plectasin was produced at a very high, and commercially viable, yield and purity. In vitro, the recombinant peptide was especially active against Streptococcus pneumoniae, including strains resistant to conventional antibiotics. Plectasin showed extremely low toxicity in mice, and cured them of experimental peritonitis and pneumonia caused by S. pneumoniae as efficaciously as vancomycin and penicillin. These findings identify fungi as a novel source of antimicrobial defensins, and show the therapeutic potential of plectasin. They also suggest that the defensins of insects, molluscs and fungi arose from a common ancestral gene.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Hongos/química , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Clonación Molecular , ADN Complementario/genética , Defensinas/química , Modelos Animales de Enfermedad , Hongos/genética , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/fisiología , Humanos , Ratones , Datos de Secuencia Molecular , Péptidos , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/microbiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología
3.
Science ; 328(5982): 1168-72, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20508130

RESUMEN

Host defense peptides such as defensins are components of innate immunity and have retained antibiotic activity throughout evolution. Their activity is thought to be due to amphipathic structures, which enable binding and disruption of microbial cytoplasmic membranes. Contrary to this, we show that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular target. Consistently, binding studies confirmed the formation of an equimolar stoichiometric complex between Lipid II and plectasin. Furthermore, key residues in plectasin involved in complex formation were identified using nuclear magnetic resonance spectroscopy and computational modeling.


Asunto(s)
Bacillus subtilis/metabolismo , Pared Celular/metabolismo , Defensinas/metabolismo , Proteínas Fúngicas/metabolismo , Péptidos/metabolismo , Staphylococcus/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Antibacterianos/farmacología , Ascomicetos/química , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/ultraestructura , Sitios de Unión , Membrana Celular/metabolismo , Simulación por Computador , Defensinas/farmacología , Proteínas Fúngicas/farmacología , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptidos/farmacología , Conformación Proteica , Staphylococcus/efectos de los fármacos , Staphylococcus/crecimiento & desarrollo , Staphylococcus/ultraestructura , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA