Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35886996

RESUMEN

In recent years, new cross-linkers from renewable resources have been sought to replace toxic synthetic compounds of this type. One of the most popular synthetic cross-linking agents used for biomedical applications is glutaraldehyde. However, the unreacted cross-linker can be released from the materials and cause cytotoxic effects. In the present work, dialdehyde starch nanocrystals (NDASs) were obtained from this polysaccharide nanocrystal form as an alternative to commonly used cross-linking agents. Then, 5-15% NDASs were used for chemical cross-linking of native chitosan (CS), gelatin (Gel), and a mixture of these two biopolymers (CS-Gel) via Schiff base reaction. The obtained materials, forming thin films, were characterized by ATR-FTIR, SEM, and XRD analysis. Thermal and mechanical properties were determined by TGA analysis and tensile testing. Moreover, all cross-linked biopolymers were also characterized by hydrophilic character, swelling ability, and protein absorption. The toxicity of obtained materials was tested using the Microtox test. Dialdehyde starch nanocrystals appear as a beneficial plant-derived cross-linking agent that allows obtaining cross-linked biopolymer materials with properties desirable for biomedical applications.


Asunto(s)
Proteínas Sanguíneas , Quitosano , Reactivos de Enlaces Cruzados , Gelatina , Nanopartículas , Almidón , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Quitosano/química , Quitosano/metabolismo , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Gelatina/química , Gelatina/metabolismo , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Almidón/análogos & derivados , Almidón/química , Almidón/metabolismo
2.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073072

RESUMEN

Understanding the mechanism of interactions between magnetite nanoparticles and phospholipids that form cellular membranes at the molecular level is of crucial importance for their safe and effective application in medicine (e.g. magnetic resonance imaging, targeted drug delivery, and hyperthermia-based anticancer therapy). In these interactions, their surface coating plays a crucial role because even a small modification to its structure can cause significant changes to the behaviour of the magnetite nanoparticles that come in contact with a biomembrane. In this work, the influence of the magnetite nanoparticles functionalized with native and aminated starch on the thermodynamics, morphology, and dilatational elasticity of the model cell membranes was studied. The model cell membranes constituted the Langmuir monolayers formed at the air-water interface of dipalmitoylphosphatidylcholine (DPPC). The surface of the aminated starch-coated nanoparticles was enriched in highly reactive amino groups, which allowed more effective binding of drugs and biomolecules suitable for specific nano-bio applications. The studies indicated that the presence of these groups also reduced to some extent the disruptive effect of the magnetite nanoparticles on the model membranes and improved their adsorption.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Nanopartículas de Magnetita/química , Membranas Artificiales , Almidón/química , Aminación , Propiedades de Superficie , Termodinámica
3.
Molecules ; 25(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331398

RESUMEN

Binding and transport of ligands is one of the most important functions of human blood serum proteins. Human serum albumin is found in plasma at the highest concentration. Because of this, it is important to study protein-drug interactions for this albumin. Since there is no single model describing this interaction, it is necessary to measure it for each active substance. Drug binding should also be studied in conditions that simulate pathological conditions of the body, i.e., after oxidative stress. Due to this, it is expected that the methods for testing these interactions need to be easy and fast. In this study, albumin immobilized on magnetic nanoparticles was successfully applied in the study of protein-drug binding. Ketoprofen was selected as a model drug and interactions were tested under normal conditions and artificially induced oxidative stress. The quality of obtained results for immobilized protein was confirmed with those for free albumin and literature data. It was shown that the type of magnetic core coverage does not affect the quality of the obtained results. In summary, a new, fast, effective, and universal method for testing protein-drug interactions was proposed, which can be performed in most laboratories.


Asunto(s)
Cetoprofeno/química , Nanopartículas de Magnetita/química , Estrés Oxidativo , Albúmina Sérica/química , Sitios de Unión , Proteínas Portadoras , Cromatografía Líquida de Alta Presión , Materiales Biocompatibles Revestidos , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Polisacáridos/química , Unión Proteica
4.
Molecules ; 24(10)2019 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31109114

RESUMEN

Human serum albumin (HSA) is one of the most frequently immobilized proteins on the surface of carriers, including magnetic nanoparticles. This is because the drug-HSA interaction study is one of the basic pharmacokinetic parameters determined for drugs. In spite of many works describing the immobilization of HSA and the binding of active substances, research describing the influence of the used support on the effectiveness of immobilization is missing. There are also no reports about the effect of the support drying method on the effectiveness of protein immobilization. This paper examines the effect of both the method of functionalizing the polymer coating covering magnetic nanoparticles (MNPs), and the drying methods for the immobilization of HSA. Albumin was immobilized on three types of aminated chitosan-coated nanoparticles with a different content of amino groups long distanced from the surface Fe3O4-CS-Et(NH2)1-3. The obtained results showed that both the synthesis method and the method of drying nanoparticles have a large impact on the effectiveness of immobilization. Due to the fact that the results obtained for Fe3O4-CS-Et(NH2)2 significantly differ from those obtained for the others, the influence of the geometry of the shell structure on the ability to bind HSA was also explained by molecular dynamics.


Asunto(s)
Quitosano/química , Materiales Biocompatibles Revestidos , Proteínas Inmovilizadas , Nanopartículas de Magnetita , Albúmina Sérica Humana , Adsorción , Aminación , Humanos , Proteínas Inmovilizadas/química , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Polímeros/química , Albúmina Sérica Humana/química , Solventes , Espectroscopía Infrarroja por Transformada de Fourier
5.
Heliyon ; 10(15): e35389, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39165973

RESUMEN

Given the growing interest in non-toxic materials with good anti-inflammatory and antimicrobial mechanical properties, this work focuses on preparing chitosan sponges with violacein and cannabis oil crosslinked with dialdehyde chitosan. The sponge was tested for its physicochemical and biological properties, presenting a high swelling rate, good thermal stability, and satisfactory mechanical properties. The obtained sponge's water vapor transmission rate was 2101 g/m2/day and is within the recommended values for ideal wound dressings. Notably, adding violacein favorably affected the material's porosity, which is essential for dressing materials. In addition, studies have shown that the designed material interacts with human serum albumin and exhibits good antioxidant and anti-inflammatory properties. The antibacterial properties of the prepared biomaterial were assessed using the Microtox test against A. fisherii (Gram-negative bacterium) and S. aureus (Gram-positive bacterium). The investigated material provides potential therapeutic benefits due to the synergistic action of chitosan, violacein, and cannabis oil so that it could be used as a dressing material. The natural origin of the substances could provide an attractive and sustainable alternative to traditional commercially available dressings.

6.
Int J Biol Macromol ; 253(Pt 3): 126933, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37722631

RESUMEN

Wound healing is a complex process; therefore, new dressings are frequently required to facilitate it. In this study, porous bacterial levan-based sponges containing cannabis oil (Lev@CBDs) were prepared and fully characterized. The sponges exhibited a suitable swelling ratio, proper water vapor transmission rate, sufficient thermal stability, desired mechanical properties, and good antioxidant and anti-inflammatory properties. The obtained Lev@CBD materials were evaluated in terms of their interaction with proteins, human serum albumin and fibrinogen, of which fibrinogen revealed the highest binding effect. Moreover, the obtained biomaterials exhibited antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, as well as being non-hemolytic material as indicated by hemolysis tests. Furthermore, the sponges were non-toxic and compatible with L929 mouse fibroblasts and HDF cells. Most significantly, the levan sponge with the highest content of cannabis oil, in comparison to others, retained its non-hemolytic, anti-inflammatory, and antimicrobial properties after prolonged storage in a climate chamber at a constant temperature and relative humidity. The designed sponges have conclusively proven their beneficial physicochemical properties and, at the preliminary stage, biocompatibility as well, and therefore can be considered a promising material for wound dressings in future in vivo applications.


Asunto(s)
Quitosano , Ratones , Animales , Humanos , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Vendajes , Fibrinógeno , Antiinflamatorios
7.
Materials (Basel) ; 15(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36295343

RESUMEN

Magnesium(II) sulfanyl porphyrazine with peripheral morpholinethoxy substituents was embedded on the surface of titanium(IV) dioxide nanoparticles. The obtained nanocomposites were characterized with the use of particle size and distribution (NTA analysis), electron microscopy (SEM), thermal analysis (TGA), FTIR-ATR spectroscopy, and X-ray powder diffraction (XRD). The measured particle size of the obtained material was 327.4 ± 15.5 nm. Analysis with XRD showed no visible changes in the crystallinity of the material after deposition of porphyrazine on the TiO2 surface. However, SEM images revealed noticeable changes in the morphology of the obtained hybrid material: higher aggregation and less ordered structure of the aggregates. The TGA analysis revealed the lost 3.6% (0.4 mg) of the mass of obtained material in the range 250-550 °C. In the FTIR-ATR analysis, C-H stretching vibratins in the range of 3000-2800 cm-1, originating from porphyrazine moieties, were detected. The photocatalytic applicability of the nanomaterial was assessed in photodegradation studies of methylene blue and bisphenol A as reference environmental pollutants. In addition, the photocatalytic degradation of carbamazepine with porphyrazine/TiO2 hybrids as photocatalysts was studied, accompanied by an HPLC chromatography assessment of photodegradation. In total, 43% of the initial concentration was achieved in the case of bisphenol A, after 4 h of irradiation, whereas 57% was achieved in the case of carbamazepine. In each photodegradation reaction, the activity of the obtained photocatalytic nanomaterial was proved with almost linear degradation. The photodegradation reaction rate constants were calculated, and revealed 5.75 × 10-5 s-1 for bisphenol A and 5.66 × 10-5 s-1 for carbamazepine.

8.
Sci Rep ; 12(1): 18658, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333591

RESUMEN

This study focuses on obtaining and characterizing novel chitosan-based biomaterials containing cannabis oil to potentially promote wound healing. The primary active substance in cannabis oil is the non-psychoactive cannabidiol, which has many beneficial properties. In this study, three chitosan-based films containing different concentrations of cannabis oil were prepared. As the amount of oil increased, the obtained biomaterials became rougher as tested by atomic force microscopy. Such rough surfaces promote protein adsorption, confirmed by experiments assessing the interaction between human albumin with the obtained materials. Increased oil concentration also improved the films' mechanical parameters, swelling capacity, and hydrophilic properties, which were checked by the wetting angle measurement. On the other hand, higher oil content resulted in decreased water vapour permeability, which is essential in wound dressing. Furthermore, the prepared films were subjected to an acute toxicity test using a Microtox. Significantly, the film's increased cannabis oil content enhanced the antimicrobial effect against A. fischeri for films in direct contact with bacteria. More importantly, cell culture studies revealed that the obtained materials are biocompatible and, therefore, they might be potential candidates for application in wound dressing materials.


Asunto(s)
Cannabis , Quitosano , Humanos , Vendajes/microbiología , Cicatrización de Heridas , Materiales Biocompatibles/farmacología
9.
Materials (Basel) ; 15(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744240

RESUMEN

Wound healing and skin tissue regeneration remain the most critical challenges faced by medical professionals. Titanium(IV) oxide-based materials were proposed as components of pharmaceutical formulations for the treatment of difficult-to-heal wounds and unsightly scarring. A gallic acid-functionalized TiO2 nanomaterial (TiO2-GA) was obtained using the self-assembly technique and characterized using the following methods: scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), X-ray powder diffraction (XRPD), infrared spectroscopy (IR), Raman spectroscopy and thermogravimetry (TG). Additionally, physicochemical and biological tests (DPPH assay, Microtox® acute toxicity test, MTT assay) were performed to assess antioxidant properties as well as to determine the cytotoxicity of the novel material against eukaryotic (MRC-5 pd19 fibroblasts) and prokaryotic (Staphylococcus aureus, Escherichia coli, Candida albicans, Aliivibrio fischeri) cells. To determine the photocytotoxicity of the material, specific tests were carried out with and without exposure to visible light lamps (425 nm). Following the results, the TiO2-GA material could be considered an additive to dressings and rinsing suspensions for the treatment of difficult-to-heal wounds that are at risk of bacterial infections.

10.
Materials (Basel) ; 14(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419055

RESUMEN

Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.

11.
RSC Adv ; 11(46): 28934-28939, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35478583

RESUMEN

A six-step synthesis of xanthohumol (1a) and its d3-derivative (1b) from easily accessible naringenin is reported. The prenyl side chain was introduced by Mitsunobu reaction followed by the europium-catalyzed Claisen rearrangement and base-mediated opening of chromanone gave access to an α,ß-conjugated ketone system. Compound 1b was used as an internal standard in stable isotope dilution assays of 1a in two Polish beers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA