RESUMEN
Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.
Asunto(s)
Enfermedades Metabólicas/genética , MicroARNs/genética , Adipocitos Marrones/patología , Adiposidad , Alelos , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Dieta Alta en Grasa , Metabolismo Energético , Epigénesis Genética , Sitios Genéticos , Glucosa/metabolismo , Homeostasis , Humanos , Hipertrofia , Resistencia a la Insulina , Leptina/deficiencia , Leptina/metabolismo , Masculino , Mamíferos/genética , Ratones Endogámicos C57BL , Ratones Obesos , MicroARNs/metabolismo , Obesidad/genética , Oligonucleótidos/metabolismo , Especificidad de la EspecieRESUMEN
Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.
Asunto(s)
Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Receptor de Insulina/metabolismo , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factor C1 de la Célula Huésped/antagonistas & inhibidores , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor de Insulina/química , Transducción de Señal/efectos de los fármacosRESUMEN
Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Humanos , Lipogénesis , Ratones , Modelos Animales , Fosfatidilcolinas/biosíntesis , Interferencia de ARN , S-Adenosilmetionina/biosíntesisRESUMEN
MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. For example, miR-33a and miR-33b have a crucial role in controlling cholesterol and lipid metabolism in concert with their host genes, the sterol-regulatory element-binding protein (SREBP) transcription factors. Other metabolic miRNAs, such as miR-103 and miR-107, regulate insulin and glucose homeostasis, whereas miRNAs such as miR-34a are emerging as key regulators of hepatic lipid homeostasis. The discovery of circulating miRNAs has highlighted their potential as both endocrine signalling molecules and disease markers. Dysregulation of miRNAs may contribute to metabolic abnormalities, suggesting that miRNAs may potentially serve as therapeutic targets for ameliorating cardiometabolic disorders.
Asunto(s)
Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , MicroARNs/metabolismo , Colesterol/metabolismo , Sistema Endocrino/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico , Obesidad/genética , Obesidad/metabolismo , Oligorribonucleótidos Antisentido/farmacología , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismoRESUMEN
Obesity is a growing public health problem associated with increased risk of type 2 diabetes, cardiovascular disease, nonalcoholic fatty liver disease (NAFLD) and cancer. Here, we identify microRNA-22 (miR-22) as an essential rheostat involved in the control of lipid and energy homeostasis as well as the onset and maintenance of obesity. We demonstrate through knockout and transgenic mouse models that miR-22 loss-of-function protects against obesity and hepatic steatosis, while its overexpression promotes both phenotypes even when mice are fed a regular chow diet. Mechanistically, we show that miR-22 controls multiple pathways related to lipid biogenesis and differentiation. Importantly, genetic ablation of miR-22 favors metabolic rewiring towards higher energy expenditure and browning of white adipose tissue, suggesting that modulation of miR-22 could represent a viable therapeutic strategy for treatment of obesity and other metabolic disorders.
Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Homeostasis , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , MicroARNs/genética , LípidosRESUMEN
Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a transcription factor-binding site in Mediator as a novel therapeutic strategy in fungal infectious disease.
Asunto(s)
Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Complejo Mediador/metabolismo , Transactivadores/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Candida glabrata/genética , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Fluconazol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hidrazinas/farmacocinética , Hidrazinas/farmacología , Cetoconazol/farmacología , Complejo Mediador/química , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacocinética , Tiourea/farmacología , Transactivadores/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Abnormal cholesterol/lipid homeostasis is linked to neurodegenerative conditions such as age-related macular degeneration (AMD), which is a leading cause of blindness in the elderly. The most prevalent form, termed "dry" AMD, is characterized by pathological cholesterol accumulation beneath the retinal pigment epithelial (RPE) cell layer and inflammation-linked degeneration in the retina. We show here that the cholesterol-regulating microRNA miR-33 was elevated in the RPE of aging mice. Expression of the miR-33 target ATP-binding cassette transporter (ABCA1), a cholesterol efflux pump genetically linked to AMD, declined reciprocally in the RPE with age. In accord, miR-33 modulated ABCA1 expression and cholesterol efflux in human RPE cells. Subcutaneous delivery of miR-33 antisense oligonucleotides (ASO) to aging mice and non-human primates fed a Western-type high fat/cholesterol diet resulted in increased ABCA1 expression, decreased cholesterol accumulation, and reduced immune cell infiltration in the RPE cell layer, accompanied by decreased pathological changes to RPE morphology. These findings suggest that miR-33 targeting may decrease cholesterol deposition and ameliorate AMD initiation and progression.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Colesterol/metabolismo , Inflamación/terapia , Degeneración Macular/terapia , MicroARNs/antagonistas & inhibidores , Fenotipo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Inflamación/etiología , Inflamación/patología , Macaca fascicularis , Degeneración Macular/etiología , Degeneración Macular/patología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Oligonucleótidos Antisentido/genéticaRESUMEN
DNA damage is linked to multiple human diseases, such as cancer, neurodegeneration, and aging. Little is known about the role of chromatin accessibility in DNA repair. Here, we find that the deacetylase sirtuin 6 (SIRT6) is one of the earliest factors recruited to double-strand breaks (DSBs). SIRT6 recruits the chromatin remodeler SNF2H to DSBs and focally deacetylates histone H3K56. Lack of SIRT6 and SNF2H impairs chromatin remodeling, increasing sensitivity to genotoxic damage and recruitment of downstream factors such as 53BP1 and breast cancer 1 (BRCA1). Remarkably, SIRT6-deficient mice exhibit lower levels of chromatin-associated SNF2H in specific tissues, a phenotype accompanied by DNA damage. We demonstrate that SIRT6 is critical for recruitment of a chromatin remodeler as an early step in the DNA damage response, indicating that proper unfolding of chromatin plays a rate-limiting role. We present a unique crosstalk between a histone modifier and a chromatin remodeler, regulating a coordinated response to prevent DNA damage.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Inestabilidad Genómica , Sirtuinas/metabolismo , Sirtuinas/fisiología , Adenosina Trifosfatasas/genética , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Hipocampo/citología , Hipocampo/metabolismo , Histonas/metabolismo , Humanos , Inmunoprecipitación , Ratones , Ratones Noqueados , Nucleosomas/metabolismo , Sirtuinas/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Epigenetic regulation of gene expression by histone-modifying corepressor complexes is central to normal animal development. The NAD(+)-dependent deacetylase and gene repressor SIRT1 removes histone H4K16 acetylation marks and facilitates heterochromatin formation. However, the mechanistic contribution of SIRT1 to epigenetic regulation at euchromatic loci and whether it acts in concert with other chromatin-modifying activities to control developmental gene expression programs remain unclear. We describe here a SIRT1 corepressor complex containing the histone H3K4 demethylase LSD1/KDM1A and several other LSD1-associated proteins. SIRT1 and LSD1 interact directly and play conserved and concerted roles in H4K16 deacetylation and H3K4 demethylation to repress genes regulated by the Notch signaling pathway. Mutations in Drosophila SIRT1 and LSD1 orthologs result in similar developmental phenotypes and genetically interact with the Notch pathway in Drosophila. These findings offer new insights into conserved mechanisms of epigenetic gene repression and regulation of development by SIRT1 in metazoans.
Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Oxidorreductasas N-Desmetilantes/fisiología , Receptores Notch/genética , Sirtuina 1/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Inmunoprecipitación , Mutación , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Fenotipo , Receptores Notch/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismoRESUMEN
Dynamic regulation of histone modifications is critical during development, and aberrant activity of chromatin-modifying enzymes has been associated with diseases such as cancer. Histone demethylases have been shown to play a key role in eukaryotic gene transcription; however, little is known about how their activities are coordinated in vivo to regulate specific biological processes. In Drosophila, two enzymes, dLsd1 (Drosophila ortholog of lysine-specific demethylase 1) and Lid (little imaginal discs), demethylate histone H3 at Lys 4 (H3K4), a residue whose methylation is associated with actively transcribed genes. Our studies show that compound mutation of Lid and dLsd1 results in increased H3K4 methylation levels. However, unexpectedly, Lid mutations strongly suppress dLsd1 mutant phenotypes. Investigation of the basis for this antagonism revealed that Lid opposes the functions of dLsd1 and the histone methyltransferase Su(var)3-9 in promoting heterochromatin spreading at heterochromatin-euchromatin boundaries. Moreover, our data reveal a novel role for dLsd1 in Notch signaling in Drosophila, and a complex network of interactions between dLsd1, Lid, and Notch signaling at euchromatic genes. These findings illustrate the complexity of functional interplay between histone demethylases in vivo, providing insights into the epigenetic regulation of heterochromatin/euchromatin boundaries by Lid and dLsd1 and showing their involvement in Notch pathway-specific control of gene expression in euchromatin.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Histona Demetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Metilación , Mutación/genética , Oxidorreductasas N-Desmetilantes/genética , Fenotipo , Receptores Notch/genética , Transducción de SeñalRESUMEN
The sterol regulatory element-binding protein (SREBP) transcription factor family is a critical regulator of lipid and sterol homeostasis in eukaryotes. In mammals, SREBPs are highly active in the fed state to promote the expression of lipogenic and cholesterogenic genes and facilitate fat storage. During fasting, SREBP-dependent lipid/cholesterol synthesis is rapidly diminished in the mouse liver; however, the mechanism has remained incompletely understood. Moreover, the evolutionary conservation of fasting regulation of SREBP-dependent programs of gene expression and control of lipid homeostasis has been unclear. We demonstrate here a conserved role for orthologs of the NAD(+)-dependent deacetylase SIRT1 in metazoans in down-regulation of SREBP orthologs during fasting, resulting in inhibition of lipid synthesis and fat storage. Our data reveal that SIRT1 can directly deacetylate SREBP, and modulation of SIRT1 activity results in changes in SREBP ubiquitination, protein stability, and target gene expression. In addition, chemical activators of SIRT1 inhibit SREBP target gene expression in vitro and in vivo, correlating with decreased hepatic lipid and cholesterol levels and attenuated liver steatosis in diet-induced and genetically obese mice. We conclude that SIRT1 orthologs play a critical role in controlling SREBP-dependent gene regulation governing lipid/cholesterol homeostasis in metazoans in response to fasting cues. These findings may have important biomedical implications for the treatment of metabolic disorders associated with aberrant lipid/cholesterol homeostasis, including metabolic syndrome and atherosclerosis.
Asunto(s)
Regulación hacia Abajo , Ayuno/fisiología , Sirtuina 1/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Acetilación , Animales , Benzamidas/farmacología , Caenorhabditis elegans , Línea Celular , Colesterol/biosíntesis , Regulación hacia Abajo/efectos de los fármacos , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Lípidos/biosíntesis , Ratones , Naftoles/farmacología , Niacinamida/farmacología , Estabilidad Proteica/efectos de los fármacos , Sirtuinas/antagonistas & inhibidoresRESUMEN
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by promoting degradation and/or repressing translation of specific target mRNAs. Several miRNAs have been identified that regulate the amplitude of the innate immune response by directly targeting Toll-like receptor (TLR) pathway members and/or cytokines. miR-33a and miR-33b (the latter present in primates but absent in rodents and lower species) are located in introns of the sterol regulatory element-binding protein (SREBP)-encoding genes and control cholesterol/lipid homeostasis in concert with their host gene products. These miRNAs regulate macrophage cholesterol by targeting the lipid efflux transporters ATP binding cassette (ABC)A1 and ABCG1. We and others have previously reported that Abca1(-/-) and Abcg1(-/-) macrophages have increased TLR proinflammatory responses due to augmented lipid raft cholesterol. Given this, we hypothesized that miR-33 would augment TLR signaling in macrophages via a raft cholesterol-dependent mechanism. Herein, we report that multiple TLR ligands down-regulate miR-33 in murine macrophages. In the case of lipopolysaccharide, this is a delayed, Toll/interleukin-1 receptor (TIR) domain-containing adapter-inducing interferon-ß-dependent response that also down-regulates Srebf-2, the host gene for miR-33. miR-33 augments macrophage lipid rafts and enhances proinflammatory cytokine induction and NF-κB activation by LPS. This occurs through an ABCA1- and ABCG1-dependent mechanism and is reversible by interventions upon raft cholesterol and by ABC transporter-inducing liver X receptor agonists. Taken together, these findings extend the purview of miR-33, identifying it as an indirect regulator of innate immunity that mediates bidirectional cross-talk between lipid homeostasis and inflammation.
Asunto(s)
Transportador 1 de Casete de Unión a ATP/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/inmunología , Inmunidad Innata , Macrófagos/inmunología , Microdominios de Membrana/inmunología , MicroARNs/inmunología , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Animales , Microdominios de Membrana/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Células RAW 264.7 , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/inmunologíaRESUMEN
In the past decade, microRNAs (miRNAs) have emerged as key regulators of circulating levels of lipoproteins. Specifically, recent work has uncovered the role of miRNAs in controlling the levels of atherogenic low-density lipoprotein LDL (LDL)-cholesterol by post-transcriptionally regulating genes involved in very low-density lipoprotein (VLDL) secretion, cholesterol biosynthesis, and hepatic LDL receptor (LDLR) expression. Interestingly, several of these miRNAs are located in genomic loci associated with abnormal levels of circulating lipids in humans. These findings reinforce the interest of targeting this subset of non-coding RNAs as potential therapeutic avenues for regulating plasma cholesterol and triglyceride (TAG) levels. In this review, we will discuss how these new miRNAs represent potential pre-disposition factors for cardiovascular disease (CVD), and putative therapeutic targets in patients with cardiometabolic disorders. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Asunto(s)
LDL-Colesterol/genética , MicroARNs/genética , Animales , Enfermedades Cardiovasculares/genética , Humanos , Enfermedades Metabólicas/genética , Receptores de LDL/genética , Triglicéridos/genéticaRESUMEN
Members of the metazoan nuclear receptor superfamily regulate gene expression programs in response to binding of cognate lipophilic ligands. Evolutionary studies using bioinformatics tools have concluded that lower eukaryotes, such as fungi, lack nuclear receptor homologs. Here we review recent discoveries suggesting that members of the fungal zinc cluster family of transcription regulators represent functional analogs of metazoan nuclear receptors. These findings indicate that nuclear receptor-like ligand-dependent gene regulatory mechanisms emerged early during eukaryotic evolution, and provide the impetus for further detailed studies of the possible evolutionary and mechanistic relationships of fungal zinc cluster transcription factors and metazoan nuclear receptors. Clinical implications of the discovery of nuclear receptor-like transcription factors in pathogenic fungi will also be discussed.
Asunto(s)
Hongos/genética , Hongos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica Múltiple/fisiología , Ácidos Grasos/metabolismo , Humanos , Oxidación-Reducción , Peroxisomas/fisiología , Activación Transcripcional/fisiologíaRESUMEN
The retinoblastoma protein (pRB) negatively regulates the progression from G1 to S phase of the cell cycle, in part, by repressing E2F-dependent transcription. pRB also possesses E2F-independent functions that contribute to cell-cycle control--for example, during pRB-mediated cell-cycle arrest pRB associates with Skp2, the F-box protein of the Skp1-Cullin-F-box protein (SCF) E3 ubiquitin ligase complex, and promotes the stability of the cyclin-dependent kinase-inhibitor p27(Kip1) through an unknown mechanism. Degradation of p27(Kip1) is mediated by ubiquitin-dependent targeting of p27(Kip1) by SCF -Skp2 (ref. 4). Here, we report a novel interaction between pRB and the anaphase-promoting complex/cyclosome (APC/C) that controls p27(Kip1) stability by targeting Skp2 for ubiquitin-mediated degradation. Cdh1, an activator of APC/C, not only interacts with pRB but is also required for a pRB-induced cell-cycle arrest. The results reveal an unexpected physical convergence between the pRB tumour-suppressor protein and E3 ligase complexes, and raise the possibility that pRB may direct APC/C to additional targets during pRB-mediated cell-cycle exit.
Asunto(s)
Anafase , Proteína de Retinoblastoma/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Cadherinas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Fase G1 , Humanos , Fase S , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina/metabolismoRESUMEN
Multidrug resistance (MDR) is a serious complication during treatment of opportunistic fungal infections that frequently afflict immunocompromised individuals, such as transplant recipients and cancer patients undergoing cytotoxic chemotherapy. Improved knowledge of the molecular pathways controlling MDR in pathogenic fungi should facilitate the development of novel therapies to combat these intransigent infections. MDR is often caused by upregulation of drug efflux pumps by members of the fungal zinc-cluster transcription-factor family (for example Pdr1p orthologues). However, the molecular mechanisms are poorly understood. Here we show that Pdr1p family members in Saccharomyces cerevisiae and the human pathogen Candida glabrata directly bind to structurally diverse drugs and xenobiotics, resulting in stimulated expression of drug efflux pumps and induction of MDR. Notably, this is mechanistically similar to regulation of MDR in vertebrates by the PXR nuclear receptor, revealing an unexpected functional analogy of fungal and metazoan regulators of MDR. We have also uncovered a critical and specific role of the Gal11p/MED15 subunit of the Mediator co-activator and its activator-targeted KIX domain in antifungal/xenobiotic-dependent regulation of MDR. This detailed mechanistic understanding of a fungal nuclear receptor-like gene regulatory pathway provides novel therapeutic targets for the treatment of multidrug-resistant fungal infections.
Asunto(s)
Candida glabrata/metabolismo , Farmacorresistencia Fúngica , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Receptores de Esteroides/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Complejo Mediador , Familia de Multigenes , Receptor X de Pregnano , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Xenobióticos/metabolismoRESUMEN
The E2F1 transcription factor can promote proliferation or apoptosis when activated, and is a key downstream target of the retinoblastoma tumour suppressor protein (pRB). Here we show that E2F1 is a potent and specific inhibitor of beta-catenin/T-cell factor (TCF)-dependent transcription, and that this function contributes to E2F1-induced apoptosis. E2F1 deregulation suppresses beta-catenin activity in an adenomatous polyposis coli (APC)/glycogen synthase kinase-3 (GSK3)-independent manner, reducing the expression of key beta-catenin targets including c-MYC. This interaction explains why colorectal tumours, which depend on beta-catenin transcription for their abnormal proliferation, keep RB1 intact. Remarkably, E2F1 activity is also repressed by cyclin-dependent kinase-8 (CDK8), a colorectal oncoprotein. Elevated levels of CDK8 protect beta-catenin/TCF-dependent transcription from inhibition by E2F1. Thus, by retaining RB1 and amplifying CDK8, colorectal tumour cells select conditions that collectively suppress E2F1 and enhance the activity of beta-catenin.
Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Factor de Transcripción E2F1/antagonistas & inhibidores , Factor de Transcripción E2F1/metabolismo , Proteína de Retinoblastoma/metabolismo , Transcripción Genética , beta Catenina/antagonistas & inhibidores , beta Catenina/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Apoptosis , Línea Celular , Quinasa 8 Dependiente de Ciclina , Regulación de la Expresión Génica , Genes myc/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Proteína de Retinoblastoma/genética , Transducción de Señal , Factores de Transcripción TCF/metabolismo , Proteínas Wnt/metabolismoRESUMEN
The sterol regulatory element binding protein (SREBP) family of transcription activators are critical regulators of cholesterol and fatty acid homeostasis. We previously demonstrated that human SREBPs bind the CREB-binding protein (CBP)/p300 acetyltransferase KIX domain and recruit activator-recruited co-factor (ARC)/Mediator co-activator complexes through unknown mechanisms. Here we show that SREBPs use the evolutionarily conserved ARC105 (also called MED15) subunit to activate target genes. Structural analysis of the SREBP-binding domain in ARC105 by NMR revealed a three-helix bundle with marked similarity to the CBP/p300 KIX domain. In contrast to SREBPs, the CREB and c-Myb activators do not bind the ARC105 KIX domain, although they interact with the CBP KIX domain, revealing a surprising specificity among structurally related activator-binding domains. The Caenorhabditis elegans SREBP homologue SBP-1 promotes fatty acid homeostasis by regulating the expression of lipogenic enzymes. We found that, like SBP-1, the C. elegans ARC105 homologue MDT-15 is required for fatty acid homeostasis, and show that both SBP-1 and MDT-15 control transcription of genes governing desaturation of stearic acid to oleic acid. Notably, dietary addition of oleic acid significantly rescued various defects of nematodes targeted with RNA interference against sbp-1 and mdt-15, including impaired intestinal fat storage, infertility, decreased size and slow locomotion, suggesting that regulation of oleic acid levels represents a physiologically critical function of SBP-1 and MDT-15. Taken together, our findings demonstrate that ARC105 is a key effector of SREBP-dependent gene regulation and control of lipid homeostasis in metazoans.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Homeostasis , Metabolismo de los Lípidos , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans , Humanos , Complejo Mediador , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión a los Elementos Reguladores de Esteroles/química , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Activación TranscripcionalRESUMEN
SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir's apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hepatitis C , Humanos , SARS-CoV-2 , Antivirales/uso terapéutico , Sofosbuvir/farmacología , Nucleósidos/farmacología , Adenosina Monofosfato , Alanina , Hepacivirus , Hepatitis C/tratamiento farmacológico , PulmónRESUMEN
The COVID-19 pandemic is exacting an increasing toll worldwide, with new SARS-CoV-2 variants emerging that exhibit higher infectivity rates and that may partially evade vaccine and antibody immunity. Rapid deployment of non-invasive therapeutic avenues capable of preventing infection by all SARS-CoV-2 variants could complement current vaccination efforts and help turn the tide on the COVID-19 pandemic. Here, we describe a novel therapeutic strategy targeting the SARS-CoV-2 RNA using locked nucleic acid antisense oligonucleotides (LNA ASOs). We identify an LNA ASO binding to the 5' leader sequence of SARS-CoV-2 that disrupts a highly conserved stem-loop structure with nanomolar efficacy in preventing viral replication in human cells. Daily intranasal administration of this LNA ASO in the COVID-19 mouse model potently suppresses viral replication (>80-fold) in the lungs of infected mice. We find that the LNA ASO is efficacious in countering all SARS-CoV-2 "variants of concern" tested both in vitro and in vivo. Hence, inhaled LNA ASOs targeting SARS-CoV-2 represents a promising therapeutic approach to reduce or prevent transmission and decrease severity of COVID-19 in infected individuals. LNA ASOs are chemically stable and can be flexibly modified to target different viral RNA sequences and could be stockpiled for future coronavirus pandemics.