Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Med ; 10(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202314

RESUMEN

(1) Background: The purpose of this study was to determine whether preemptive duloxetine in patients with central sensitization (CS) is effective for acute postoperative pain control and wound healing following total knee arthroplasty (TKA). (2) Methods: CS was defined as a score of 40 points or higher on the Central Sensitization Inventory (CSI) survey. Thirty-nine patients with CS were randomly assigned to either the duloxetine group (n = 19) or the placebo group (n = 20). The duloxetine group took duloxetine 30 mg once a day, while the placebo group took the placebo medication once a day. A pain visual analog scale (VAS) and the Brief Pain Inventory (BPI), wound complications, the temperature of the surgical site, and adverse events were investigated. Skin temperature was measured at the center of the patella using a portable digital thermometer. (3) Results: The duloxetine group reported significantly lower pain VAS scores during follow-up periods up to 6 weeks after surgery (all p < 0.05). BPI interference also showed significantly superior results in the duloxetine group after surgery (all p < 0.05). Although there was no difference in the rate of wound complications between the two groups (p > 0.05), the duloxetine group showed significantly lower wound temperature than the placebo group during the follow-up period (all p < 0.05). (4) Conclusion: In this study, preemptive duloxetine effectively reduced pain and lowered wound temperature following TKA in CS patients.

2.
ACS Appl Mater Interfaces ; 12(35): 39705-39712, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805908

RESUMEN

A simple fabrication method for homojunction-structured Al-doped indium-tin oxide (ITO) thin-film transistors (TFTs) using an electrohydrodynamic (EHD) jet-printed Al2O3 passivation layer with specific line (WAl2O3) is proposed. After EHD jet printing, the specific region of the ITO film below the Al2O3 passivation layer changes from a conducting electrode to a semiconducting channel layer simultaneously upon the formation of the passivation layer during thermal annealing. The channel length of the fabricated TFTs is defined by WAl2O3, which can be easily changed with varying EHD jet printing conditions, i.e., no need of replacing the mask for varying patterns. Accordingly, the drain current and resistance of the fabricated TFTs can be modified by varying the WAl2O3. Using the proposed method, a transparent n-type metal-oxide-semiconductor (NMOS) inverter with an enhancement load can be fabricated; the effective resistance of load and drive TFTs is easily tuned by varying the processing conditions using this simple method. The fabricated NMOS inverter exhibits an output voltage gain of 7.13 with a supply voltage of 10 V. Thus, the proposed approach is promising as a low-cost and flexible manufacturing system for multi-item small-lot-sized production of Internet of Things devices.

3.
ACS Appl Mater Interfaces ; 10(43): 37207-37215, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30338976

RESUMEN

A facile fabrication of polymer/metal-oxide hybrid semiconductors is introduced to overcome the intrinsically brittle nature of inorganic metal-oxide semiconductors. The fabrication of the hybrid semiconductors was enabled by plasma polymerization of polytetrafluoroethylene (PTFE) via radio frequency magnetron sputtering process which is highly compatible with metal-oxide semiconductor manufacturing facilities. Indium-gallium-zinc oxide (IGZO) and PTFE are cosputtered to fabricate PTFE-incorporated IGZO thin-film transistors (IGZO:PTFE TFTs) and they exhibit a field-effect mobility of 10.27 cm2 V-1 s-1, a subthreshold swing of 0.38 V dec-1, and an on/off ratio of 1.08 × 108. When compared with conventional IGZO TFTs, the IGZO:PTFE TFTs show improved stability results against various electrical, illumination, thermal, and moisture stresses. Furthermore, the IGZO:PTFE TFTs show stable electrical characteristics with a threshold voltage ( Vth) shift of 0.89 V after 10 000 tensile bending cycles at a radius of 5 mm.

4.
ACS Appl Mater Interfaces ; 10(22): 18837-18844, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29749231

RESUMEN

Eco-friendly solution-processed oxide thin-film transistors (TFTs) were fabricated through photocatalytic reaction of titanium dioxide (PRT). The titanium dioxide (TiO2) surface reacts with H2O under ultraviolet (UV) light irradiation and generates hydroxyl radicals (OH•). These hydroxyl radicals accelerate the decomposition of large organic compounds such as 2-methoxyethanol (2ME; one of the representative solvents for solution-processed metal oxides), creating smaller organic molecular structures compared with 2ME. The decomposed small organic materials have low molar masses and low boiling points, which help improving electrical properties via diminishing defect sites in oxide channel layers and fabricating low-temperature solution-processed oxide TFTs. As a result, the field-effect mobility improved from 4.29 to 10.24 cm2/V·s for IGZO TFTs and from 2.78 to 7.82 cm2/V·s for IZO TFTs, and the Vth shift caused by positive bias stress and negative bias illumination stress over 1000 s under 5700 lux decreased from 6.2 to 2.9 V and from 15.3 to 2.8 V, respectively. In theory, TiO2 has a permanent photocatalytic reaction; as such, hydroxyl radicals are generated continuously under UV irradiation, improving the electrical characteristics of solution-processed IZO TFTs even after four iterations of TiO2 recycling in this study. Thus, the PRT method provides an eco-friendly approach for high-performance solution-processed oxide TFTs.

5.
ACS Appl Mater Interfaces ; 10(19): 16613-16622, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29682960

RESUMEN

We suggest thermal treatment with static magnetic fields (SMFs) or rotating magnetic fields (RMFs) as a new technique for the activation of indium-gallium-zinc oxide thin-film transistors (IGZO TFTs). Magnetic interactions between metal atoms in IGZO films and oxygen atoms in air by SMFs or RMFs can be expected to enhance metal-oxide (M-O) bonds, even at low temperature (150 °C), through attraction of metal and oxygen atoms having their magnetic moments aligned in the same direction. Compared to IGZO TFTs with only thermal treatment at 300 °C, IGZO TFTs under an RMF (1150 rpm) at 150 °C show superior or comparable characteristics: field-effect mobility of 12.68 cm2 V-1 s-1, subthreshold swing of 0.37 V dec-1, and on/off ratio of 1.86 × 108. Although IGZO TFTs under an SMF (0 rpm) can be activated at 150 °C, the electrical performance is further improved in IGZO TFTs under an RMF (1150 rpm). These improvements of IGZO TFTs under an RMF (1150 rpm) are induced by increases in the number of M-O bonds due to enhancement of the magnetic interaction per unit time as the rpm value increases. We suggest that this new process of activating IGZO TFTs at low temperature widens the choice of substrates in flexible or transparent devices.

6.
ACS Appl Mater Interfaces ; 9(35): 29849-29856, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28812360

RESUMEN

Solution-processed amorphous metal-oxide thin-film transistors (TFTs) utilizing an intermixed interface between a metal-oxide semiconductor and a dielectric layer are proposed. In-depth physical characterizations are carried out to verify the existence of the intermixed interface that is inevitably formed by interdiffusion of cations originated from a thermal process. In particular, when indium zinc oxide (IZO) semiconductor and silicon dioxide (SiO2) dielectric layer are in contact and thermally processed, a Si4+ intermixed IZO (Si/IZO) interface is created. On the basis of this concept, a high-performance Si/IZO TFT having both a field-effect mobility exceeding 10 cm2 V-1 s-1 and a on/off current ratio over 107 is successfully demonstrated.

7.
Sci Rep ; 7(1): 16265, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176568

RESUMEN

We report low-temperature solution processing of hafnium oxide (HfO2) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl4) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO2 film. The fabricated HfO2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

8.
Sci Rep ; 7(1): 12469, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963493

RESUMEN

In this study, we propose a self-activated radical doping (SRD) method on the catalyzed surface of amorphous oxide film that can improve both the electrical characteristics and the stability of amorphous oxide films through oxidizing oxygen vacancy using hydroxyl radical which is a strong oxidizer. This SRD method, which uses UV irradiation and thermal hydrogen peroxide solution treatment, effectively decreased the amount of oxygen vacancies and facilitated self-passivation and doping effect by radical reaction with photo-activated oxygen defects. As a result, the SRD-treated amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) showed superior electrical performances compared with non-treated a-IGZO TFTs. The mobility increased from 9.1 to 17.5 cm2/Vs, on-off ratio increased from 8.9 × 107 to 7.96 × 109, and the threshold voltage shift of negative bias-illumination stress for 3600 secs under 5700 lux of white LED and negative bias-temperature stress at 50 °C decreased from 9.6 V to 4.6 V and from 2.4 V to 0.4 V, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA