Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 19(3): 1743-1748, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469258

RESUMEN

Porous TiO2 nanotube arrays have been attracting much attention as optical sensing layers and surface layers of dental implants because they are stable in acid and biocompatible. To use them as the optical sensing layers, TiO2 nanotube arrays with various structures were fabricated and obtained an optimized microstructure at 50 V, 50 min and 0.5 wt% of NH4F, 7.4 vol% deionized water in ethylene glycol. TiO2 nanotube arrays which had diameters of ~73.54 nm and lengths of ~3.39 µm showed the best sensing performance. A Ti implant was also anodized at 60 V for 4 hr in an ethylene glycol electrolyte and TiO2 nanotube arrays showed the pore diameter of 156.01 nm and the thickness of 6.87 µm. Recombinant human bone morphogenetic protein-2 (rhBMP-2), isobutylphenyl propionic acid, and sodium alendronate were loaded into the TiO2 nanotube arrays on the surface of the Ti implant. For elution of these drugs, optical thickness changes of 2.4 nm, 3.5 nm and 3.1 nm were respectively observed for about 2.2 hr, 3.6 hr and 3.1 hr. The TiO2 nanotube arrays were useful for drug loading and their elution interferometric sensing.

2.
Polymers (Basel) ; 16(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475377

RESUMEN

Titanium dioxide (TiO2) is a widely studied material with many attractive properties such as its photocatalytic features. However, its commercial use is limited due to issues such as deactivation in the visible spectrum caused by its wide bandgap and the short lifetime of photo-excited charge carriers. To overcome these challenges, various modifications could be considered. In this study, we investigated copper doping and electron beam treatment. As-spun TiO2 nanofibers were fabricated by electrospinning a TiO2 sol, which obtained viscosity through a polyvinylpyrrolidone (PVP) matrix. Cu-doped TiO2 nanofibers with varying dopant concentrations were synthesized by adding copper salts. Then, the as-spun nanofibers were calcined for crystallization. To evaluate photocatalytic performance, a photodegradation test of methylene blue aqueous solution was performed for 6 h. Methylene blue concentration was measured over time using UV-Vis spectroscopy. The results showed that Cu doping at an appropriate concentration and electron-beam irradiation showed improved photocatalytic efficiency compared to bare TiO2 nanofibers. When the molar ratio of Cu/Ti was 0.05%, photodegradation rate was highest, which was 10.39% higher than that of bare TiO2. As a result of additional electron-beam treatment of this sample, photocatalytic efficiency improved up to 8.93% compared to samples without electron-beam treatment.

3.
Adv Sci (Weinh) ; 10(16): e2207695, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36991522

RESUMEN

Oxygen evolution reaction (OER) under acidic conditions becomes of significant importance for the practical use of a proton exchange membrane (PEM) water electrolyzer. In particular, maximizing the mass activity of iridium (Ir) is one of the maiden issues. Herein, the authors discover that the Ir-doped calcium copper titanate (CaCu3Ti4O12, CCTO) perovskite exhibits ultrahigh mass activity up to 1000 A gIr -1 for the acidic OER, which is 66 times higher than that of the benchmark catalyst, IrO2 . By substituting Ti with Ir in CCTO, metal-oxygen (M-O) covalency can be significantly increased leading to the reduced energy barrier for charge transfer. Further, highly polarizable CCTO perovskite referred to as "colossal dielectric", possesses low defect formation energy for oxygen vacancy inducing a high number of oxygen vacancies in Ir-doped CCTO (Ir-CCTO). Electron transfer occurs from the oxygen vacancies and Ti to the substituted Ir consequentially resulting in the electron-rich Ir and -deficient Ti sites. Thus, favorable adsorptions of oxygen intermediates can take place at Ti sites while the Ir ensures efficient charge supplies during OER, taking a top position of the volcano plot. Simultaneously, the introduced Ir dopants form nanoclusters at the surface of Ir-CCTO, which can boost catalytic activity for the acidic OER.

4.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616487

RESUMEN

The superior chemical and electrical properties of TiO2 are considered to be suitable material for various applications, such as photoelectrodes, photocatalysts, and semiconductor gas sensors; however, it is difficult to commercialize the applications due to their low photoelectric conversion efficiency. Various solutions have been suggested and among them, the increase of active sites through surface modification is one of the most studied methods. A porous nanostructure with a large specific surface area is an attractive solution to increasing active sites, and in the electrospinning process, mesoporous nanofibers can be obtained by controlling the composition of the precursor solution. This study successfully carried out surface modification of TiO2 nanofibers by mixing polyvinylpyrrolidone with different molecular weights and using diisopropyl azodicarboxylate (DIPA). The morphology and crystallographic properties of the TiO2 samples were analyzed using a field emission electron microscope and X-ray diffraction method. The specific surface area and pore properties of the nanofiber samples were compared using the Brunauer-Emmett-Teller method. The TiO2 nanofibers fabricated by the precursor with K-30 polyvinyl pyrrolidone and diisopropyl azodicarboxylate were more porous than the TiO2 nanofibers without them. The modified nanofibers with K-30 and DIPA had a photocatalytic efficiency of 150% compared to TiO2 nanofibers. Their X-ray diffraction patterns revealed anatase peaks. The average crystallite size of the modified nanofibers was calculated to be 6.27-9.27 nm, and the specific surface area was 23.5-27.4 m2/g, which was more than 150% larger than the 17.2 m2/g of ordinary TiO2 nanofibers.

5.
Polymers (Basel) ; 13(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34883751

RESUMEN

Ni0.5Zn0.5Fe2O4 nanofibers with an average diameter of 133.56 ± 12.73 nm were fabricated by electrospinning and calcination. According to our thermogravimetric-differential thermal analysis and X-ray diffraction results, the calcination temperature was 650 °C. The microstructure, crystal structure, and chemical composition of the nanofibers were observed using field-emission scanning electron, X-ray diffraction, and energy-dispersive X-ray spectroscopy. Commercial particle samples and samples containing 10 wt% and 20 wt% nanofibers were fabricated, and the electromagnetic properties were analyzed with a vector network analyzer and a 7.00 mm coaxial waveguide. Regardless of the nanofiber content, Ni0.5Zn0.5Fe2O4 was dominantly affected by the magnetic loss mechanism. Calculation of the return loss based on the transmission line theory confirmed that the electromagnetic wave return loss was improved up to -59.66 dB at 2.75 GHz as the nanofiber content increased. The absorber of mixed compositions with Ni0.5Zn0.5Fe2O4 nanofibers showed better microwave absorption performance. It will be able to enhance the performance of commercial electromagnetic wave absorbers of various types such as paints and panels.

6.
Polymers (Basel) ; 13(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34451174

RESUMEN

For the removal of pollutants, a modified TiO2 photocatalyst is attracting attention. Fe-doped TiO2 nanofibers were prepared through a combination of electrospinning and calcination. Morphological characterization of the sample was conducted using field-emission scanning electron and transmission electron microscopy. The crystal structure of each sample was analyzed using high-resolution transmission electron microscopy, selected area electron diffraction, and Fast Fourier Transform imaging. The average diameter of the Fe-doped TiO2 nanofibers was measured to be 161.5 nm and that of the pure TiO2 nanofibers was 181.5 nm. The crystal phase when heat treated at 350 °C was anatase for TiO2 nanofibers and rutile for Fe-doped TiO2 nanofibers. The crystal phase of the TiO2 matrix was easily transitioned to rutile by Fe-doping. The photocatalytic performance of each sample was compared via the photodegradation of methylene blue and acid orange 7 under ultraviolet and visible light irradiation. In the Fe-doped TiO2 nanofibers, photodegradation rates of 38.3% and 27.9% were measured under UV irradiation and visible light, respectively. Although other catalysts were not activated, the photodegradation rate in the Fe-doped TiO2 nanofibers was 9.6% using acid orange 7 and visible light. For improved photocatalytic activity, it is necessary to study the concentration control of the Fe dopant.

7.
Nanomaterials (Basel) ; 10(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32660131

RESUMEN

Electrospun NiZn ferrite nanofibers have great potential due to their one-dimensional structure and electrical properties, but they have a low reproducibility resulting from many process confounders, so much research effort is needed to achieve optimized process control. For structure control, the viscosity of the precursor solution is a likely parameter. One solution is to use polyvinyl pyrrolidone (PVP) and metal nitrate to obtain the desired viscosity by increasing the nitrate content, even if the polymer content is decreased. Ni0.5Zn0.5Fe2O4 ferrite nanofiber was electrospun with various precursor conditions. Fifteen different precursor solutions, with a content of five polymers and three metal nitrates, were prepared, with precursor solutions composed of Fe(NO3)2·9H2O, Ni(NO3)2·6H2O, Zn(NO3)2·6H2O, polyvinyl pyrrolidone (PVP), and N,N-dimethylmethanamide. The fiber diameter changed from the lowest, of 62.41 nm, to 417.54 nm. This study shows that the average diameter can be controlled using the metal nitrate concentration without a difference in crystal structure when PVP is used. In a 24.0 mmol metal nitrate precursor solution, the process yield was improved to 140% after heat treatment. There was also no significant difference in the crystal structure and morphology. This system reduces the cost of raw materials for electrospinning and increases the process yield of NiZn ferrite nanofibers.

8.
Nanomaterials (Basel) ; 10(7)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635421

RESUMEN

Photocatalysts are the most important technology in air pollution removal and the detoxification of organic materials. Doping and complexation are among the most used methods to improve the efficiency of photocatalysts. Titanium dioxide and zinc oxide nanomaterials are widely used materials for photocatalysts and the degradation of toxic materials. Their mixed structure can be fabricated by many methods and the structure affects their properties. Nanofibers are efficient materials for photocatalysts due to their vertically formed structure, which improves the charge separation of photoelectrons. We fabricated them by an electrospinning process. A precursor consisting of titanium 4-isopropoxide, zinc acetate dihydrate and polyvinylpyrrolidone was used as a spinning solution for a mixed structure of titanium dioxide and zinc oxide with different molar ratios. They were then calcined, crystallized by heat treatment and analyzed by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM) and energy-dispersive spectroscope (EDS). After annealing, the average diameters of the Ti-Zn complex oxide nanofibers were 237.6-278.6 nm with different salt ratios, and multiple crystalline structures were observed, namely TiO2, ZnO, ZnTiO3 and Zn2TiO4. We observed the photocatalytic performance of the samples and compared them according to the photodegradation of methylene blue. The methylene blue concentration decreased to 0.008-0.650 after three hours, compared to an initial concentration of 1, with different metal oxide structures.

9.
J Nanosci Nanotechnol ; 20(6): 3582-3587, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31748055

RESUMEN

TiO2 is a significant n-type semiconducting material because of its superior electric and photocatalytic properties. Although this material has been extensively studied as a semiconductor electrode for dye-sensitized solar cells for its inherent bandgap and its excellent electrical and chemical properties, the photoelectric efficiency is nevertheless lower than that of the Si-based solar cells, which is generally reported as 13-27%. On the other hand, various carbon structures have been studied to increase the overall charge transport efficiency by reducing the charge transport resistance in the cell while having high electric conductivity. These results are expected to improve the photoelectric conversion efficiency when applied to dye-sensitized solar cells. We fabricated a TiO2/multi-wall carbon nanotube (MWCNT) core-shell structure by a hydrothermal method. The TiO2 anatase phase in the TiO2/MWCNT core-shell structure was confirmed by X-ray diffraction (XRD). The core-shell nanostructure with a diameter of 127 nm to 211 nm was observed by field emission scanning electron microscope (FE-SEM). The morphology of the TiO2/MWCNT core-shell nanocomposite was also analyzed by transmission electron microscope (TEM). The Fourier-Transform Infrared Spectrometer (FT-IR) and Brunauer Emmett and Teller (BET) method were used to observe the chemical bonding and specific surface area of the TiO2/MWCNT core-shell nanocomposite, respectively. The TiO2/MWCNT core-shell composites had a larger specific surface area of 92.00 m²/g, a larger pore volume of 0.33 cm³/g, and a larger pore size of 65.21 nm than commercial TiO2 nanoparticles (P25). The TiO2/MWCNT core-shell structure may provide a high-speed path for photoelectrons to pass quickly and will be useful for various applications, such as solar cells and photocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA